A Privacy-Centric Approach: Scalable and Secure
Federated Learning Enabled by Hybrid
Homomorphic Encryption

Khoa Nguyen!, Tanveer Khan! (<), Hossein Abdinasibfar!, and Antonis
Michalas!-2

! Tampere University, Tampere, Finland
2 RISE Research Institutes of Sweden
{khoa.nguyen, tanveer.khan, hossein.abdinasibfar,
antonios.michalas}@tuni.fi

Abstract. Federated Learning (FL) enables collaborative model train-
ing without sharing raw data, making it a promising approach for
privacy-sensitive domains. Despite its potential, FL faces significant
challenges, particularly in terms of communication overhead and data
privacy. Privacy-preserving Techniques (PPTs) such as Homomorphic
Encryption (HE) have been used to mitigate these concerns. However,
these techniques introduce substantial computational and communication
costs, limiting their practical deployment. In this work, we explore how
Hybrid Homomorphic Encryption (HHE), a cryptographic protocol that
combines symmetric encryption with HE, can be effectively integrated
with FL to address both communication and privacy challenges, paving
the way for scalable and secure decentralized learning system.

Keywords: Federated Learning - Machine Learning - Privacy.

1 Introduction

Machine learning (ML) has increasingly become one of the most impactful fields
of data science in recent years, allowing various users to classify and make
predictions based on multidimensional data. One of the primary metrics for ML
is the accuracy of the prediction or classification results. However, to achieve this,
the results should be accompanied by a large amount of high-quality training
data that requires the collaboration of several organizations. New regulations
such as the General Data Protection Regulations (GDPR) forbid the sharing and
processing of sensitive data without the consent of the data subject. This is a key
limitation especially when the training data contains sensitive information and
therefore poses security threats. For example, to develop a breast cancer detection
model from MRI scans, different hospitals can share their data to develop a
collaborative ML model. However, sharing private patient information to a central

To appear in the Proceedings of the First Workshop on Responsible Healthcare using
Machine Learning (RHCML 2025)

2 K. Nguyen et al.

server can reveal sensitive information to the public with several repercussions.
Therefore, it has become crucial to protect data privacy, confidentiality, and
profit sharing while obtaining data from other organizations. One solution to
this problem is employing Federated Learning (FL).

FL enables collaborative model training across edge devices without sharing
raw data, making it suitable for domains like healthcare and autonomous trans-
portation [23]. A key challenge in FL is ensuring data privacy while managing
communication overhead and data heterogeneity. Although FL keeps data local,
Adversaries (ADV) can still infer private information [25], which necessitates
Privacy-preserving Techniques (PPTs).

Among PPTs, Homomorphic Encryption (HE)) [35120] and Secure Multi-party
Computation (SMPC) [36I32/18] are widely used. HE allows computation on
encrypted data, enabling privacy without compromising utility. However, HE
introduces high computational and communication costs, and large ciphertext
sizes making real-world deployment difficult [22/9/T3I30/19]. To address this
Hybrid Homomorphic Encryption (HHE) combines symmetric encryption with
HE, significantly reducing ciphertext size and communication cost [9)2] . Users
encrypt data with a symmetric key and then encrypt the key using HE. The server
uses the encrypted key to process the data securely. HHE thus enables practical
deployment of HE on consumer devices by offloading complex computations
to the servers. Researchers have deployed HE-friendly symmetric ciphers (e.g,
HERA /Rubato [6/17], Elisabeth [§] and PASTA [9]) to support this approach.
HHE effectively mitigates both communication and privacy challenges in FL. In
this paper, we aim to explore the effectiveness and feasibility of combining FL
with HHE. Specifically, we focus on:

Research Questions

— Can we combine FL. and HHE to achieve shared trained models without
leaking data privacy?

— Does HHE degrade accuracy of the aggregated model compared to
plaintext and HE version?

— What are the trade-offs we have to make?
e How much computation and communication does each client save?
e How much more computation is needed on the server to compensate?

2 Related Works

FL trains ML models on distributed devices by aggregating local model updates
instead of local data. While FL ensures that local raw data do not leave their
original locations, it remains vulnerable to eavesdroppers and malicious FL
servers that might exploit local plaintext models to reconstruct sensitive training
data [12J3814]. One measure to protect against privacy breaches is differential
privacy in which noise is added to the training updates by each client. However,
while this paradigm protects private information, it comes at a utility trade-off

A Privacy-Centric Approach 3

and can lead to fewer performance models, as demonstrated recently. Another
PPT which could be used to address the privacy issue of FL is HE. HE can protect
against malicious server eavesdroppers while maintaining model performance by
encrypting the weight before sending them to the central server. In HE based FL,
the goal is to ensure that no client reveals its model updates during aggregation.
Several approaches [31I37] have been proposed to achieve this, including the use
of a partially HE scheme [I1]. With HE, gradient aggregation can be performed
on ciphertexts without decrypting them in advance. For example, Mandal and
Gong [27] created robust and secure training protocols for federated regression
models using HE. Park and Lim [31] propose employing an HE scheme that
enables the centralized server to aggregate encrypted local model parameters
without decryption and allows each client to use a different HE key in the same
FL system using a distributed cryptosystem. In another work, Madi et al. [26]
propose an FL framework that is secure against both confidentiality and integrity
threats from the aggregation server by employing HE and verifiable computing.
Stripelis et al.,, [34], propose a secure FL framework using FHE with the CKKS
scheme. Testing on the MRI dataset shows no performance loss between encrypted
and non-encrypted models. Shi et al., in paper [33] propose a privacy-preserving
scheme combining secret sharing and encryption to protect local parameters
and resist collusion in FL. The authors also claim that the proposed protocol
supports client dropouts, keyless aggregation, and simple interactions. In short,
the use of HE schemes in the implementation of PPML continues to garner
attention. Gentry’s work [I5] revolutionized the field of HE and paved the way
for multiple modern schemes, such as TFHE [5], BFV [I0], and CKKS [4] in
PPML applications.

BFYV allows a limited number of operations over integer ciphertext while
CKKS [4] extends this to floating-point data. TFHE [5] improves upon boot-
strapping and bitwise operations on binary data without batching [7]. BFV and
CKKS allow batching for faster ML computation, while TFHE uses look-up
tables and packing. Each scheme handles non-linear activation functions in ML
differently: TFHE uses look-up tables, and BFV/CKKS uses polynomial approxi-
mation [24[2T]. Although guaranteeing up to a high degree of privacy, a major
downside of these algorithms is that they demand significant computational
resources. HE schemes have large ciphertexts and high computational complexity,
limiting their use. To address these issues, HHE [9I2] combines symmetric ciphers,
making it more practical for users.

The first approaches to designing HHE schemes relied primarily on existing
and well-established symmetric ciphers such as AES [16]. However, these were not
suitable for HHE schemes due to their large multiplicative depth [9]. As a result
of this limitation, research in the field of HHE has mainly focused on the design
of compatible symmetric ciphers with different optimization criteria [I]], such as
eliminating the ciphertext expansion [3] or using filter permutators [29]. However,
to date, HHE has seen limited practical use [I] in real-world applications, and
only a handful of works exist in the field of PPML. To the best of our knowledge,
the main HHE schemes currently are HERA [6], Elisabeth [§] and PASTA [9].

4 K. Nguyen et al.

The authors of HERA also proposed Rubato [I7]; however, the specifications
remain largely the same as in HERA. These proposed approaches have different
specifications and apply to different use cases. HERA [6] is a stream cipher based
on the CKKS HE scheme and allows computations on floating-point data types.
In comparison, Elisabeth [8] utilizes the TFHE scheme, is defined over Zq, where
q = 2%, and stores up to 4 bits of data. PASTA [9] utilizes the BFV scheme for
integer data types. HERA and PASTA are defined over Zq, where q = 2'6+1, and
store up to 16-bit data. Each scheme achieves the same security level of 128-bits.
Additionally, HERA also provides tests for a security level of 80 bits. As HERA
allows computations on floating-point data types, it does not require quantization
on certain inputs. Elisabeth and PASTA, on the other hand, require quantization
to operate on floating-point numbers, which introduces a rounding error, which
can reduce the accuracy of certain applications, i.e. ML.

3 Preliminaries

3.1 Federated Learning

The concept of FL was first introduced by Google AI Blog] to protect data privacy.
It is a distributed ML approach, where multiple users collaboratively train a
model [28]. In this technique, the central server selects a set of users and sends
them the initial model parameters. Each user provides its local data for training,
does the training locally, and sends the local model updates to the central server,
while the central server aggregates the final model. Hence, raw data are not shared
in this approach, whereas the neural network architecture, parameters, and the
intermediate representation of the model (weights, activations, and gradients)
are shared between the users and the server during the learning process. With
the help of FL, the clients can benefit from obtaining a well-trained ML model
without having to send their private data to a central server.

Definition of FL Let’s assume their are N users U = {uy,us, ..., u,} own their
own datasets {Dy,Ds,..., Dy} and each of them cannot directly access to other
users’ data to expand their own data.

(1) The server initializes and sends the initial model to each user

(2) Each client trains its own local model W; on the local data D;

(3) The server collects and aggregates the local models W; from the clients
into an updated global model, and share this global model to all users

(4) Repeat step 2 until the model converges, or the maximum number of the
FL rounds has been reached

3.2 Homomorphic Encryption

Definition 1 (Homomorphic Encryption). Let HE be a (public-key) homo-
morphic encryption scheme with a quadruple of PPT algorithms HE = (KeyGen,
Enc, Dec, Eval) such that:

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

A Privacy-Centric Approach 5

— HE.KeyGen : The key generation algorithm (pk, evk,sk) «+— HE.KeyGen(1*)
takes as input a unary representation of the security parameter A\, and outputs
a public key pk, an evaluation key evk and a private key sk.

— HE.Enc : The encryption algorithm ¢ <— HE.Enc(pk,) takes as input the
public key pk and a message = and outputs a ciphertext c.

— HE.Eval : The algorithm ¢; < HE.Eval(evk, f,c1,...,c) takes as input the
evaluation key evk, a function f, and a set of n ciphertexts, and outputs a
ciphertext cy.

— HE.Dec : The decryption algorithm HE.Dec(sk, c) — z, takes as input the
secret key sk and a ciphertext ¢, and outputs a plaintext x.

3.3 Hybrid Homomorphic Encryption

Definition 2 (Hybrid Homomorphic Encryption). Let HE be a Homomor-
phic Encryption scheme and SKE = (Gen, Enc, Dec) be a symmetric-key encryp-
tion scheme. Moreover, let X = (x1,...,x,) be the message space and X\ the secu-
rity parameter. An HHE scheme consists of five PPT algorithms HHE = (KeyGen,
Enc, Decomp, Eval, Dec) such that:

— HHE.KeyGen: The key generation algorithm takes as input a security param-
eter A and outputs a HE public/private key pair (pk/sk) and a HE evaluation
key (evk).

— HHE.Enc: This algorithm consists of three steps:

o SKE.Gen: The SKE generation algorithm takes as input security parameter
A and outputs a symmetric key K.

e HE.Enc: An HE encryption algorithm that takes as input pk and K, and
outputs ck — a homomorphically encrypted representation of the symmetric
key K.

e SKE.Enc: The SKE encryption algorithm takes as input a message = and K
and outputs a ciphertext c.

— HHE.Decomp: This algorithm takes as an input the evk, the symmetrically
encrypted ciphertext ¢, and the homomorphically encrypted symmetric key
ck, and outputs ¢’ — a homomorphic encryption of the original message z.

— HHE.Eval: It takes as input n homomorphic ciphertexts ¢],, where n > 2,
the evk and a homomorphic function f, and outputs a ciphertext ¢, of the
evaluation results.

— HHE.Dec: This algorithm takes as input a private key sk and the evaluated
ciphertext ¢, ,, and outputs f(x).

3.4 Rubato HHE Framework

We present the Rubato and RtF HHE framework [17] in HE evaluation
are performed in the boxes with thick lines. Operations in the boxes with rounded
corners do not use any secret information.

Initialization The RtF transciphering framework uses both F'V and CKKS
schemes. For a fixed security parameter A, set parameters such as the degree of the

6 K. Nguyen et al.

Client Server
» {ncetrtetr
Eval™V(E,")
ncletr
k—p FV
Offline SlotToCoef f
e I N =N

| | Scale(.)] —>
m ctr . q

. CKKS-encrypted message

Fig. 1. The RtF transciphering framework.

polynomial modulus and the ciphertext moduli, and generate the public-private

key pair to satisfy the desired security level A. For a secret key k € Z used for a

symmetric cipher E, the client computes the F'V-ciphertext K of the symmetric

secret key k and sends it to the server.
Client-side Computation:

— Offline Phase: The client generates a keystream z € Zy from the cipher E,
taking the nonce nc € {0,1}* and the secret key k € Zq as inputs.

— Online Phase: First, the client scales up the plaintext message m (in floating
point) by a scaling factor A to obtain a quantized message: m = |A-m] € Ly .
Then, the client performs addition modulo ¢ between the keystream z and
the scaled message m, resulting in a symmetric ciphertext: ¢ = [m + z],. The
client sends c along with the nonce nc to the server.

Server-side Computation:
— Offline Phase:

o First, the server evaluates the keystream using a tuple of nonces (nco,...,ncg_1)
and the FV-encrypted symmetric key K. This results in an FV-ciphertext V
containing the keystreams of E in its slots.

e Then, the server applies a linear transformation SlotToCoeff™ to move
the data from the slots to the coefficients, obtaining an FV-ciphertext
Z containing the keystreams in its coefficients. All of the homomorphic
evaluations above are done in the F'V scheme.

— Online Phase:

e During online phase, the server first scales up the symmetric ciphertext c
into the FV ciphertext space, resulting in an FV-ciphertext C containing the
symmetric ciphertexts in its coefficients.

A Privacy-Centric Approach 7

e Then, it subtracts homomorphically the evaluated keystream Z from C:
X = C — Z, yielding an FV-ciphertext & having scaled messages in its
coefficients.

e The final step is HalfBoot, a modified bootstrapping process in the RtF
framework. Given X’ as input, it outputs a CKKS-ciphertext: HalfBoot(X) =
M, where M contains the CKKS-encrypted messages in its slots.

4 FLHHE

4.1 System Model

In this section, we introduce our system model by explicitly describing our

protocol’s main entities and their capabilities.

— Trusted key dealer: The trusted key dealer creates and distributes all the
HHE keys to the clients along with an HE encryption ck, of the symmetric key
to the CSP.

— Client: Let C = {c1,...,Cy} be the set of all clients. Each client uses the
unique symmetric key K; locally and encrypts their data. The generated
ciphertexts are then outsourced to the CSP.

— Cloud Service Provider (CSP): Primarily responsible for gathering symmet-
rically encrypted data from multiple users. The CSP is tasked with converting
the symmetrically encrypted data into homomorphic ciphertexts and, upon
request, performing blind operations on them.

4.2 Threat Model

We consider a semi-honest (honest-but-curious) threat model, where both clients
and server, follow the protocol correctly but may attempt to infer private infor-
mation from the data they receive. To ensure privacy in this setting, the system
must satisfy the following requirements:

(i) Client should only access their own local models and the final aggregated
model, without visibility into other clients’ models or data (%) The server must
receive encrypted models and secure parameters, without learning the raw data.
(iii) All client-side data remains strictly confidential and protected from both
the server and other clients.

5 Methodology

Our proposed FL system is mainly composed of two key entities: a central model
aggregation server and multiple distributed clients, as shown in The
server is responsible for securely aggregating encrypted local models submitted by
the clients, while each client trains a local model on its private dataset and trans-
mits the encrypted model along with secure parameters to the server. Through
the collaborative process, an optimal global model is constructed iteratively over
multiple training rounds. Unlike conventional FL frameworks, our approach uses

8 K. Nguyen et al.

HHE to improve privacy and reduce communication overhead between clients
and server. The specific construction of the proposed protocol is explained in
detail in the following;:

Initialization: Before training starts, the clients receive the symmetric key,
HE private / public keys, and the server receive HE ciphertext of the symmetric
key and HE evaluation key from the key dealer. The server selects participating
clients, defines the model architecture and key parameters like learning rate,
batch size, number of local epochs. All parties establish secure communication
channels and synchronize these parameters. Each client then receives an initial
plaintext model from the server in preparation for local training.

Local Training: Each client trains local model on private data, resulting
in an updated set of model parameters in plaintext. These models reflect client-
specific learning based on their local data. After training, clients encrypt their
local model using symmetric encryption. The symmetric encrypted models are
then sent to the server.

Server Aggregation: Upon receiving encrypted models, the server uses
HHE’s transcipher and evaluation primitives to homomorphically convert and
aggregate the model. The FL Server aggregates using the most simple weight
averaging algorithm SimpAvg in the HE domain, where each client’s model
contributes equally, regardless of its dataset size: wgiohal = % Z§=1 wy. Here,
K is the number of clients, and wy is the model weights from client k. We
use simple FL averaging algorithm since our goal is to demonstrate that under
HHE, accuracy of the aggregated model is comparable with one produced under
plaintext, not to demonstrate how accurate our FL. model is.

6 Experiment

In this section, we evaluate the performance of the FLHHE protocol, focusing on

its computational and communication cost, and compare its performance against

the same FL procedure using a plain CKKS HE scheme. Below is the detailed
configurations of our experimental environment:

— Hardware: Our experimental testbed is a commercial Macbook Pro laptop
with an Apple M4 Max with 16 CPU cores, integrated GPU of 40 cores, and 128
GB of RAM. All trainings and evaluation are done in a simulated environment
under this testbed.

— Software: We use the pytorch library to train the neural networks locally for
the users, the Lattigo v6 for plain CKKS, and the Rubato combined with the
RtF transciphering framework for our HHE implementations

— Dataset: We used the classic MNIST dataset of 28x28 handwritten images to
evaluate the performance of our method. We process the raw MNIST dataset,
which contains 60,000 samples in total, into 3 partitions for training, each
holds by a client:

e Partition 1: Exclude labels 1, 3, 7 (40,862 samples)
e Partition 2: Exclude labels 2, 5, 8 (42,770 samples)
e Partition 3: Exclude labels 4, 6, 9 (42,291 samples)

A Privacy-Centric Approach 9

Client Server

Plaintext Symmetric
, Encryption

GG

A; Symmetric encrypted model

Ciphertext
Client 1 0

excluded 1,2,3

Client 2 Transciphering

I

|

|

I

I

I

— |
MNIST |
excluded 4,5,6 |
1

|

|

I

I

|

|

I

Client 3
o
MNIST *

excluded 7,8,9

HE Aggregation

A7 Homomorphic encrypted model

Fig. 2. FL Framework with HHE for Secure Model Aggregation

— Neural Network: We use a fully connected neural network that consists
of two linear layers (without bias terms) and a ReLU activation function in
between. The network takes a batch of flattened MNIST images, each with
length 784, processes it through a hidden layer of 32 neurons, and produces 10
output values (one for each digit 0-9). The plaintext weights are then flattened
into 1D vectors before being encrypted in HE and HHE domains. The values
in these weight vectors are floating point in the range of [—1,1]. The weight
vectors are in the JSON format for plaintext version, or in binaries for the
encrypted versions, for data persistence and communication.

Computation Analysis: We report each party’s FLHHE performance averaged
over 10 runs (see [Table 1))

Hence, server processing time per client is 39.81 sec. With these results, we
can see that the initialization/setup cost is quite heavy but is front-loaded, only
needed to do once, and scales well with more rounds and clients. For clients,
HHE introduces almost zero latency overhead at the client-side since symmetric
encryption during the online phase only takes 0.008 sec, which is statically
insignificant compared to training time (2.73 sec). The trade-off lies at the server
side, but this can still be scalable since server-side computations can be highly
optimized, for example, using careful orchestrated parallelize computation and/or
distributed systems.

Communication Analysis: Communication cost is measured by file size

(binary /json). [Table 2|list key sizes shared once at the start of the protocol by
the key dealer.

10 K. Nguyen et al.

Table 1. Computation Time Breakdown (in seconds)

Role Task Time (sec)
Key generation (once) 57.45

Key Dealer Load keys 20.53
Symmetric key encryption 5.33

Decrypt global model 0.07

. Local training 2.73
Client Keystream generation (offline) 0.55
Symmetric encryption (online) 0.008

Total per client 3.32

Produce Z (offline) 32.94

Server (per client) Transcipher M (online) 6.87
HE aggregation (online) 0.003

Table 2. Memory sizes of cryptographic keys

Keys Size
pk (public key) 29.4 MB
re (relinearization key) 352.3 MB
rot (rotation key) 11.27 GB
sk (secret key) 14.7 MB
symmetric_ key 512 Bytes
HE Encrypted Symmetric Key|738.5 MB

For each client, each linear layer that is encrypted symmetrically takes 524
KB in disk, making the whole 2 linear layer neural network 1.048 MB in total.
The HE-averaged model output by the server after the HHE protocol takes 16.8
MB in size (8.4 MB per encrypted layer). After aggregation, the server will send
the HE encrypted model to each client to decrypt. Hence, for each client, the
total communication cost for each round is 1.048 4+ 16.8 = 17.848 MB. And
for 3 clients, the total communication cost for one FL round under HHE is
17.848 * 3 = 53.544 MB. We can see that the majority of communication cost is
incurred by the downloading step of the average HE model from the server, while
the symmetric model that’s needed to be uploaded by each client is 16 times less
heavy in size.

6.1 Comparison with Plaintext and CKKS-based HE

Accuracy Comparisons: Evaluating the plaintext averaged model, the de-
crypted averaged models under HE and under HHE all give the exact same
accuracies on all test sets:

— Accuracy on test set with all samples: 65.92%

— Accuracy on test set with labels 1, 3, 7: 73.15%

— Accuracy on test set with labels 2, 5, 8: 54.35%

— Accuracy on test set with labels 4, 6, 9: 58.43%

A Privacy-Centric Approach 11

Computation Comparisons: Note that for FLHHE, we only account for the
computation time of the online phase for both the client and the server, since
the values in the offline phase can be precomputed, for example, the values of
the offline phase of the server can be computed while the clients do the training,
similarly for the clients. On the client side:

— In the plaintext setting, each client simply trains the model locally without
any encryption.

— Under HE, clients first decrypt the global model received from the server,
train locally, and then re-encrypt the updated model into HE ciphertext before
sending it back.

— In FLHHE, clients also decrypt the average HE-encrypted model downloaded
from the server and train locally, but instead of encrypting with HE, they
encrypt their updated model using symmetric encryption before sending it
back to the server. shows client computation time.

Table 3. Computation Time for Different FL Settings (unit: sec)

Client Computation Server Computation
Activity Plain|HE |FLHHE Activity Plain | HE |FLHHE
Decrypt model| N/A {0.07| 0.07 Transcipher | N/A [N/A| 6.75
Local training | 2.73 |2.73| 2.73 Aggregation|0.00005|0.004|0.003
Encrypt model| N/A 0.21{0.008 Total 0.00005|0.004| 6.75
Total 2.73 [3.01/2.808

Research Question Answers

— This result helps us answer our first research question: “Can we combine
FL and HHE to achieve shared trained models without leaking data
privacy?”. The answer is yes, FLHHE enables collaborative model training
with a focus on privacy.

— Regarding the second research question, experimental results show us
that HHE does not degrade the accuracy of the FL aggregated model
compared to the plaintext or HE version.

On the server side:
— In the plaintext case, the server performs standard model averaging on the
unencrypted models.
— For the HE setting, the server directly aggregates the models within HE domain
using homomorphic operations.
— With FLHHE, server transciphers symmetrically encrypted models received from
clients into HE ciphertexts and performs model averaging in HE domain.
[Table 3|shows server-side computation time breakdown for one client for one round.
We can see that server-side computation of FLHHE is dominated transciphering.
After the transciphering step, HE aggregation in FL. with HE and FLHHE are

12 K. Nguyen et al.

comparable, however, they are still about 70 times slower than aggregation in
plaintext.

Research Question Answers

FLHHE offers a reduction in client-side computation compared to a full
HE implementation, and adds minimal overhead compared to plaintext.
The total online computation time for a client in FLHHE is 2.808 seconds,
compared to 3.01 seconds for HE and 2.73 seconds for plaintext ([Table 3)).
The critical symmetric encryption step in FLHHE takes only 0.008 seconds,
compared to 0.21 seconds for HE, which is 26.25 times faster. This is
critical when the model scales up in terms of complexity and size.

Research Question Answers

How much computation is needed on the server to compensate?
The primary trade-off for efficiencies gained by the client is a substantial
increase in server-side computation, mainly due to the transciphering
step. Server online computation time per client per round in FLHHE: 6.75
seconds (This is significantly higher than both the HE setting
(0.004 seconds) and the plaintext setting (0.00005 seconds). This increased
load is dominated by the "Transcipher" step, which takes 6.75 seconds.

\. J

Communication Comparisons: shows per-client communication
cost per round for plaintext, HE, and HHE.

Table 4. Communication cost per client in one round

1 round, 1 client|Send (MB)|Receive (MB)|Total (MB)
Plain 0.563 0.564 1.127
HE 16.8 16.8 33.6
HHE 1.048 16.8 17.848

Research Question Answers

Client Communication Savings: FLHHE reduces client upload costs.

— Upload Cost: Clients using FLHHE send 1.048 MB, which is 16 times
less than the 16.8 MB required with HE.

— Total Cost: The total communication cost per client per round for
FLHHE is 17.848 MB (1.048 MB send + 16.8 MB receive), which is
nearly half that of the HE scheme (33.6 MB total).

— Scalability: As shown in HHE’s total communication cost
scales better than HE as the number of clients increases, which is
important in large-scale production settings.

A Privacy-Centric Approach 13

Communication Cost over 10 Rounds

6,000

4,000
2,000 - =

0l e —e |
| | | |

1 5 10 20

Total Communication Cost (MB)

—e— Plain —m— HE —— HHE

Fig. 3. Communication cost vs. number of clients

Overall, while the plaintext version is much cheaper in terms of communication
(16 times less than HHE, and 30 times less than HE), it offers no privacy data
protection. In contrast, for a client in an FL training workflow, using HHE can
save a lot of upload cost compared to HE (16 times less) by sending a symmetric
encrypted model instead of an HE encrypted one. Nevertheless, since the FL
server returns the same HE-encrypted aggregated model in both cases, the total
communication cost of FLHHE for each client is reduced only 2 times, compared
to HE. However, consider the fact that in real-world FL deployments with many
clients participating across many rounds, this reduction can lead to substantial

overall bandwidth savings(see [Figure 3)).

7 Generalizable Insights about Responsible Application of
Machine Learning in Healthcare

This work demonstrates that combining lightweight encryption with FL can
protect client data without sacrificing model performance. Key insights include:

— Client-side efficiency: Reducing client-side cost is crucial for deployment
in resource-constrained healthcare settings.

— Privacy-utility trade-offs: Client-side encryption with secure server pro-
cessing balances privacy and performance.

— Scalable privacy-preserving FL: Communication-efficient approaches are
essential for real-world healthcare applications.

Remark 1. Although we did not use a healthcare dataset, the proposed method
can be easily extended to such settings and is applicable to any healthcare dataset,
supporting responsible and secure ML in healthcare.

14 K. Nguyen et al.

Open Science and Reproducible Research: To support open science and
reproducible research, source code used for the evaluations is publicly availabld]

8 Conclusion

In this work, we investigated the integration of HHE with FL, termed FLHHE,
to address the critical challenges of data privacy and communication overhead
in decentralized model training. The protocol uses symmetric encryption on
the client-side and HE on the server-side, with a transciphering step to convert
between them. This approach is designed to prevent raw data leakage, offering
privacy benefits over plaintext FL, and is compared against a full HE-based
approach in terms of performance. Experimental results demonstrate that FLHHE
enables collaborative model training without compromising accuracy, offering
enhanced privacy and substantially reduced client communication. While it in-
creases server-side computation, the benefits for client resource efficiency position
FLHHE as a promising pathway towards more practical, scalable, and secure FL
systems. Future work may optimize client downloading cost, improve server-side
transciphering and aggregation, or explore real-world applications of FLHHE.

Acknowledgments. This work was funded by the HARPOCRATES EU research
project (No. 101069535).

References

1. Bakas, A., Frimpong, E., Michalas, A.: Symmetrical disguise: Realizing homomor-
phic encryption services from symmetric primitives. In: International Conference
on Security and Privacy in Communication Systems. pp. 353-370. Springer (2022)

2. Bakas, A., Michalas, A.: Modern family: A revocable hybrid encryption scheme
based on attribute-based encryption, symmetric searchable encryption and sgx. In:
International conference on security and privacy in communication systems. pp.
472-486. Springer (2019)

3. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier, P.,
Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-ciphertext
compression. Journal of Cryptology 31(3), 885-916 (2018)

4. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of
approximate numbers. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 409-437. Springer (2017)

5. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Advances in Cryptology—
ASTACRYPT 2016. pp. 3-33. Springer (2016)

6. Cho, J., Ha, J., Kim, S., Lee, B., Lee, J., Lee, J., Moon, D., Yoon, H.: Transciphering
framework for approximate homomorphic encryption. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 640-669.
Springer (2021)

https://github.com/khoaguin/flhhe

https://github.com/khoaguin/flhhe

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A Privacy-Centric Approach 15

Clet, P.E., Stan, O., Zuber, M.: Bfv, ckks, tthe: Which one is the best for a secure
neural network evaluation in the cloud? In: Applied Cryptography and Network
Security Workshops: ACNS 2021 Satellite Workshops. pp. 279-300. Springer (2021)
Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.X.: Towards case-optimized
hybrid homomorphic encryption: Featuring the elisabeth stream cipher. In: Advances
in Cryptology — ASTACRYPT 2022. p. 32-67. Springer-Verlag (2023)

Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch,
R.: Pasta: a case for hybrid homomorphic encryption. Transaction on Cryptographic
Hardware and Embedded Systems 2023 Issue 3 (2023)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic encryp-
tion and federated learning. Future Internet 13(4), 94 (2021)

Fredrikson, M., Jha, S.; Ristenpart, T.: Model inversion attacks that exploit confi-
dence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. pp. 1322-1333
(2015)

Frimpong, E., Nguyen, K., Budzys, M., Khan, T., Michalas, A.: Guardml: Effi-
cient privacy-preserving machine learning services through hybrid homomorphic
encryption. 39th ACM/SIGAPP Symposium On Applied Computing (SAC’24)
(2024)

Geiping, J., Bauermeister, H., Droge, H., Moeller, M.: Inverting gradients-how
easy is it to break privacy in federated learning? Advances in neural information
processing systems 33, 16937-16947 (2020)

Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
Annual Cryptology Conference. Springer (2012)

Ha, J., Kim, S., Lee, B., Lee, J., Son, M.: Rubato: Noisy ciphers for approximate
homomorphic encryption. In: Advances in Cryptology-EUROCRYPT 2022. pp.
581-610. Springer (2022)

Khan, T., Budzys, M., Michalas, A.: Make split, not hijack: Preventing feature-space
hijacking attacks in split learning. In: Proceedings of the 29th ACM Symposium on
Access Control Models and Technologies. pp. 19-30 (2024)

Khan, T., Budzys, M., Michalas, A.: Split happens: Combating advanced threats
with split learning and function secret sharing. arXiv preprint arXiv:2507.10494
(2025)

Khan, T., Budzys, M., Nguyen, K., Michalas, A.: Sok: Wildest dreams: Reproducible
research in privacy-preserving neural network training. In: Proceedings of the 24th
Privacy Enhancing Technologies Symposium (PETS’24). Springer-Verlag, Berlin,
Heidelberg (2024)

Khan, T., Michalas, A.: Learning in the dark: Privacy-preserving machine learning
using function approximation. In: 2023 IEEE 22nd International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom). pp.
62-71. IEEE (2023)

Khan, T., Nguyen, K., Michalas, A., Bakas, A.: Love or hate? share or split?
privacy-preserving training using split learning and homomorphic encryption. In:
2023 20th Annual International Conference on Privacy, Security and Trust (PST).
pp. 1-7. IEEE (2023)

Koneény, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

16

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

K. Nguyen et al.

Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J., Yoo,
D., Kim, Y.S., et al.: Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network. IEEE Access 10, 30039-30054 (2022)

Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., He, B.: A survey on
federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering 35(4), 3347-3366 (2021)
Madi, A., Stan, O., Mayoue, A., Grivet-Sébert, A., Gouy-Pailler, C., Sirdey, R.: A
secure federated learning framework using homomorphic encryption and verifiable
computing. In: 2021 Reconciling Data Analytics, Automation, Privacy, and Security:
A Big Data Challenge (RDAAPS). pp. 1-8. IEEE (2021)

Mandal, K., Gong, G.: Privfl: Practical privacy-preserving federated regressions
on high-dimensional data over mobile networks. In: Proceedings of the 2019 ACM
SIGSAC Conference on Cloud Computing Security Workshop. pp. 57-68 (2019)
McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data (2023),
https://arxiv.org/abs/1602.05629

Meéaux, P., Carlet, C., Journault, A., Standaert, F.X.: Improved filter permutators
for efficient fhe: Better instances and implementations. In: International Conference
on Cryptology in India. Springer (2019)

Nguyen, K., Khan, T., Michalas, A.: Split without a leak: Reducing privacy leak-
age in split learning. In: Security and Privacy in Communication Networks (Se-
cureComm’23), Hong Kong SAR, Hong Kong, 19—21 October 2023. Springer
Nature Switzerland, Cham (2023)

Park, J., Yu, N.Y., Lim, H.: Privacy-preserving federated learning using homo-
morphic encryption with different encryption keys. In: 2022 13th International
Conference on Information and Communication Technology Convergence (ICTC).
pp. 1869-1871. IEEE (2022)

Ryffel, T., Tholoniat, P., Pointcheval, D., Bach, F.: Ariann: Low-interaction privacy-
preserving deep learning via function secret sharing. Proceedings on Privacy En-
hancing Technologies 2022(1) (2020)

Shi, Z., Yang, Z., Hassan, A., Li, F., Ding, X.: A privacy preserving federated learning
scheme using homomorphic encryption and secret sharing. Telecommunication
Systems 82(3), 419-433 (2023)

Stripelis, D., Saleem, H., Ghai, T., Dhinagar, N., Gupta, U., Anastasiou, C.,
Ver Steeg, G., Ravi, S., Naveed, M., Thompson, P.M., et al.: Secure neuroimaging
analysis using federated learning with homomorphic encryption. In: 17th Interna-
tional Symposium on Medical Information Processing and Analysis. vol. 12088, pp.
351-359. SPIE (2021)

Tian, H., Zeng, C., Ren, Z., Chai, D., Zhang, J., Chen, K., Yang, Q.: Sphinx: En-
abling privacy-preserving online learning over the cloud. In: 2022 IEEE Symposium
on Security and Privacy (SP). pp. 2487-2501. IEEE (2022)

Wagh, S.,; Gupta, D., Chandran, N.: Securenn: 3-party secure computation for
neural network training. Proc. Priv. Enhancing Technol. 2019(3), 26-49 (2019)
Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST)
10(2), 1-19 (2019)

Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. Advances in neural informa-
tion processing systems 32 (2019)

https://arxiv.org/abs/1602.05629

	A Privacy-Centric Approach: Scalable and Secure Federated Learning Enabled by Hybrid Homomorphic Encryption

