Privacy-Preserving Al-based Glaucoma Referral
using Multi-Centric Real-World Data: A
Feasibility Study with Federated Learning
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Abstract. Glaucoma is a leading cause of irreversible blindness world-
wide, often progressing undiagnosed due to asymptomatic early stages
and limited access to specialist care. To address these barriers, we present
a feasibility study of Glaucoma-PAIR (Privacy-preserving Al-based Re-
ferral), a computer-aided system developed using federated learning (FL).
The study was conducted across a multi-centric network of three het-
erogeneous clinical sites in Portugal, two tertiary large public hospitals
and one private clinic, each with distinct patient demographics, imag-
ing equipment, and data distributions. The system leverages color fun-
dus photography and expert-labeled cases to train a glaucoma classi-
fication model, without transferring sensitive patient data across insti-
tutions by employing FL, ensuring compliance with institutional gover-
nance and data protection regulations. Our work addresses major chal-
lenges in clinical Al, including privacy, generalizability, and integration
into real-world workflows. Through close collaboration with ophthalmol-
ogists, we identified key constraints in existing referral pathways and
incorporated those insights into the study design. Notably, the federated
global model achieved performance comparable to a centralized model
trained on pooled data, improved the average sensitivity which is a criti-
cal metric for a screening tool, and showed significant performance gains
at the most clinically diverse site. This study provides a practical demon-
stration of responsible machine learning, combining privacy-preserving
operations with clinical feasibility. Our findings highlight the potential
of federated learning to enable the development of scalable and equitable
AT tools, to support patient triage for a glaucoma specialist, particularly
in settings with limited ophthalmology accessibility, promoting access to
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earlier diagnosis and care. We discuss the implications for future deploy-
ment and integration into national screening workflows.

Keywords: Federated Learning - Computer Vision - Ophthalmology.

1 Introduction

Glaucoma is a leading cause of irreversible vision loss, with millions of cases
remaining undiagnosed globally. Studies estimate that around 50% of glaucoma
cases are undiagnosed in developed countries, with even higher rates in develop-
ing regions [16]. This lack of diagnosis results in patients with advanced stages of
the disease, leading to higher treatment costs and a greater burden on healthcare
systems [2]. Current screening methods for glaucoma are not cost-effective, re-
sulting in inefficient use of healthcare resources. The cost of examination and spe-
cialized equipment limits widespread screening, particularly in resource-limited
settings [35J38]. One of the clinical sites integrating this work, has been pioneer-
ing a centre in a prospective clinical trial with artificial intelligence on glaucoma
screening (Clinicaltrial.gov:NCT05875090), which suggested a sustained circuit
between primary care settings and hospital-based clinics [20/2I]. AT has shown
promise in improving the efficiency of ophthalmology services [34], mirroring
its impact in radiology [7]. However, the scientific community, public entities,
and corporate innovators face significant challenges in transferring computer-
aided diagnosis (CAD) systems to the real world due to: (a) lack of diversity in
training data — limiting their applicability across different populations [18]; (b)
struggles with generalizability — may perform well in controlled environments but
underperforms in real-world settings [38]; (c) data privacy concerns and secu-
rity concerns [I4]; (d) interoperability issues — integrating AT tools with existing
healthcare systems is challenging; [I5]; (e) sound integration into workflows — ef-
fective integration requires a mixed methods approach, combining ethnographic
research, service experience, process engineering, and participatory design for
actionable insights [I0]. These barriers hinder the feasible implementation of Al
solutions in clinical settings, delaying the benefits of advanced technologies. To
overcome these, recent approaches comprise:

Federated Learning (FL) addresses data diversity and generalizability by en-
abling Al training across multiple institutions without sharing raw data [33U38],
and other privacy-preserving layers can be added as the homomorphic encryp-
tion during weight communication [I1]. In addition, collaborative approaches
involving multidisciplinary teams and implementing feedback loops between Al
systems and medical experts enhance the system’s reliability and continuous
improvement [7].

1.1 Main Contributions

To address these challenges, we have carried out an observational study with
retrospective data in three clinical sites in Portugal, to test FL for training
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a computer-aided system called Glaucoma-PAIR (Privacy-preserving Al-based
Referral) starting from a pre-trained model by [17]. The multi-centric design of
our study, based on real-world data, contributes to generate evidence on how to
develop ML reliability close to the clinical environment. The main contributions
of this study are summarised below.

Privacy-Preserving Federated Learning for Glaucoma Diagnosis: We developed a
computer-aided referral system trained using FL across three independent clin-
ical sites. This approach enables the use of sensitive real-world data without
requiring cross-institutional data sharing, preserving patient privacy and insti-
tutional autonomy.

Multi-Centric Real-World Validation: Unlike many AT models trained on limited
or homogeneous datasets, our study includes private data from diverse clinical
environments enhancing model generalizability across. The system maintains a
strong performance even in lower-resource sites, showcasing its robustness.

Clinician-Guided Labeling and Development: The Al model is trained on cases
curated and labeled by glaucoma specialists, ensuring meaningful grading as the
ground truth for machine learning development. This enhances both the clinical
relevance and the heterogeneity in data required for the AI model robustness
aiming to support the detection of glaucoma suspects, in the scope of patient
triage and referral for a glaucoma specialist.

Responsible Al in Practice: This work demonstrates how responsible Al princi-
ples—privacy, robustness, and stakeholder collaboration—can be operationalised
in real healthcare facilities. It offers a model for ethically grounded ML develop-
ment in sensitive domains such as ophthalmology.

2 Related Work

The need for early glaucoma detection, coupled with the limited number of oph-
thalmologists, has led to the proposal of various automatic methods for glaucoma
diagnosis or referral, using color fundus photographs, also called retinal fundus
images [40]. In recent years, several Deep Learning (DL) architectures have been
employed for the Glaucoma classification purpose, including Inception-V3 [19],
MobileNetV2 [22], ResNet-50 [1319], EfficientNetB0 [I7], VGG-16 [6], DenseNet-
201 [29], and vision transformers [8I37]. To improve the outcomes in terms of the
glaucoma diagnosis, techniques like attention-based CNNs [31], transfer learn-
ing [26], active learning [I3|, hierarchical DL models [39], and even generative
approaches [I7] have been explored in the last years.

The work of Martins et al. [22] was a key contribution in segmentation around
the optic nerve, often included in the detection typically based on U-shaped
architectures (e.g. U-Net) [24126]. Although, it should be noted that relevant
information for diagnosing glaucoma extends beyond the optic disc [12].
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CAD systems still largely depend on the use of publicly available datasets
such as ORIGA [42], REFUGE [28] or AIROGS [36]. However, most of them
are skewed towards specific demographic groups, failing to capture variations in
the population. Accessing datasets with a wide range of variables such as age,
ethnicity, and genetics, along with diverse clinical presentations of glaucoma,
is a significant challenge [4I] as there are changes in retinal structures among
different racial and ethnic groups [5I30].

3 Methods

3.1 Clinical Context and Data Sources

The study was conducted in collaboration with three ophthalmology centers in
Portugal: two large tertiary public hospitals, ULS S&o Jodo (ULSSJ) located in
Porto, ULS Santa Maria (ULSSM) and one private clinic, alm-PRIMUM (ALM),
both in Lisbon. These sites differ in patient demographics, clinical workflows,
glaucoma prevalence, and imaging equipment. At ULS S&o Jodo, fundus im-
ages were acquired during ophthalmology consultations, upon request and not
as a routine, resulting in a dataset with a high proportion of advanced glau-
coma cases and patients with high myopia—reflecting a population with more
severe disease manifestations and discs that are hard to judge on fundoscopy.
At ULS Santa Maria, the cases stemmed from a virtual clinic for which patients
are referred to when they are deemed glaucomatous or at least with high risk
factors (such as high IOP). This results in greater clinical heterogeneity and a
more balanced distribution of glaucoma stages in the dataset, due to a relatively
high frequency of wrong referrals (ie, normal cases) often based on single fac-
tors. At ALM, images are primarily sourced from general ophthalmology and
neuro-ophthalmology consultations (approximately 34% from the latter), lead-
ing to a case mix characterized by higher complexity and a greater incidence
of diagnostically challenging or atypical presentations. Table [I| summarizes the
key characteristics of the datasets from each site, underscoring the heterogene-
ity of clinical contexts used to assess the robustness and generalizability of the
proposed Al-based glaucoma referral system.

Institutional ethical approvals were obtained from the three local ethical com-
mittees in health, and a data governance protocol was secured in accordance with
national health data protection regulations. The study followed a retrospective
design, utilizing color fundus photographs already acquired during clinical prac-
tice. All data remained within the IT infrastructure of each institution; no raw
image data was exchanged, in line with privacy-preserving principles.

Each clinical coordinator oversaw the preparation of the dataset at their
respective institution, following a standardized procedure: selection of eligible
images, anonymization, and compilation of demographic and clinical data. To
better characterise the samples, the recorded variables included: anonymized
patient ID, anonymized retinal image ID, eye laterality (right/left), optic disc-
centered field of view (yes/no), age, sex, and intraocular pressure (IOP).
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Each institution’s dataset was assigned to a panel of three glaucoma special-
ists from that institution for image annotation and case labeling. Using a user
interface customised for this study, the nine experts independently reviewed each
case and classified it into one of three categories: non-classifiable (NC), glaucoma
suspect, or normal, based solely on digital visual inspection of the fundus im-
ages. Each expert labeled an average of 712 images, including the NC. The final
ground-truth label for each case was established through majority voting among
the three local experts.

Table 1. Dataset Characteristics by Clinical Site

Characteristic ULSSJ ULSSM ALM
Total number of images 404 1252 480
Images after excluding NC 322 1110 467
Age average (years) 65 69 65
Female (%) 51% 57% 42%
IOP average (mmHg) 15.94 15.81 15.75
Fundus camera brand Zeiss Canon Canon
Image quality Usable Good Good
Optic disc centered (%) 62 100 0
Expert experience (years) 7:9;9 12;4; 3 25; 6; 30
Glaucoma suspect label (%) 69 66 31

3.2 Federated Learning based on a pre-trained model

A FL architecture was developed and implemented using the Flower [3] soft-
ware framework, enabling decentralized model training across participating hos-
pitals without data centralization. Each site locally trained the model on its own
dataset, and only model weight updates were transmitted to a central coordi-
nating server. The server aggregated these updates using a federated averaging
(FedAvg) algorithm and redistributed the global model to all participants.

The baseline model for image classification was based on a previous work
described in [I7], which is the pre-trained model used in this study to be fined-
tuned in federated learning. The backbone model selected was EfficientNetBO,
chosen for its balance between performance and computational efficiency. Train-
ing was performed on a harmonized dataset, compiled by combining multiple
publicly available glaucoma-labeled datasets (ORIGA, Drishti-GS, REFUGE,
RIM-ONE, ACRIMA). Since these datasets varied in image acquisition, some
containing a standard field-of-view (FOV) in retinal imaging and others focused
on the optic disc area, the images were standardized by cropping around the op-
tic disc. These crops were resized to 224 x 224 pixels and normalized to ensure
consistency across samples.

For the federated learning experiments in this study, the optic disc was de-
tected automatically and then cropped following the work in [22], without ap-
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plying any image processing or histogram equalization. The same squared input
sized was used for training with a batch size of 4. The model optimization em-
ployed a multi-label Dice loss function with the ADAM optimizer, initialized
with a learning rate of 0.00001. The training process continued for up to 20
local epochs in each federated round, for a total of 10 rounds (e.g. 200 epochs
in total). Early stopping was triggered after 15 epochs without validation loss
improvement to mitigate local overfitting.

We benchmarked the federated model against the baseline model at each
clinical site. Performance was evaluated using site-wise test sets with metrics
including accuracy, F1-score, precision, sensitivity, and specificity published in a
MLFLow service [4]. It was only possible to apply a dataset split of 45% Train,
15% Validation and 40% Test sets, following the study protocol, in the site with
less samples. Due to memory limitations in the local computer, delays in local
training had caused some synchronicity issues in federated learning orchestration
process using Flower. For this reason, to approximate the training conditions of
all local sites, we used a training set equivalent in absolute size, keeping the 15%
in validation and using the remaining data as a local test set.

3.3 System Deployment

To enable a privacy-preserving, decentralized workflow for AI development and
validation, a custom FL infrastructure was deployed at each clinical site. The sys-
tem architecture was designed to support on-premise data processing and model
training while ensuring compliance with institutional governance protocols and
European data protection regulations (GDPR).

Each participating site was equipped with a microcomputer edge box with
GPU (NVIDIA Jetson with 32GB RAM) configured to run containerized services
via Docker. These services included the local machine learning training pipeline,
data management tool, image annotation interface, inference engine and the
respective Application Programming Interfaces. Deployment was performed col-
laboratively with the hospitals’ IT teams, who were responsible for configuring
secure network access. This included enabling SSL encryption, setting up HTTPS
port forwarding, and defining firewall rules to allow secure communication with
the central FL coordination server (a cloud virtual machine running in West Eu-
rope on Microsoft Azure) while preventing any outbound transfer of raw patient
data.

A custom web-based image annotation tool (see Figure 1) was installed on-
site and made accessible through user-specific login credentials. This interface
allowed glaucoma specialists to securely review, label, and annotate fundus im-
ages within the local hospital network. Although not fully integrated with local
clinical workflows to speed up the study execution, the image annotator usability
enabled efficient interaction of the users with the dataset while maintaining data
confidentiality.

The entire system operated under a FL paradigm, where each site trained lo-
cal models on their respective datasets and shared only model updates (weights)
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with the central server. No images or identifiable patient data were transmit-
ted externally. This decentralized setup ensured that sensitive health data never
left the premises, aligning with institutional ethics approvals and national data
handling standards.

This deployment strategy not only preserved data privacy but also created a
realistic operational environment for evaluating the performance and feasibility
of Al-assisted glaucoma referral tools near clinical practice.

Annotator

() Not Classifiable
O Glaucoma suspect

O Normal

Image Quality
() Inadequate
O Usable

O Good

O Excellent

Fig. 1. Image annotation tool.

4 Results

We compared the performance of the centralized baseline model with the FL
model across the three participating clinical sites, ULSSJ, ULSSM, and ALM.
Table [2| presents the results per site and averaged across all sites. Table |3|depicts
the confusion matrices of the tests sets for baseline and FL. models.

The average performance across the three centers indicates that the FL model
achieved comparable accuracy (0.72) to the baseline (0.73), with a slight im-
provement in Fl-score from 0.71 to 0.72, reflecting more balanced performance
across classes. Notably, the federated model outperformed the baseline in sensi-
tivity, increasing from 0.65 to 0.72 on average, which is a desirable outcome in
a screening context where minimizing false negatives is critical. However, this
gain in sensitivity came at the cost of reduced specificity, which dropped from
0.79 in the baseline model to 0.68 in the FL. model.
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Table 2. Performance Comparison of Baseline and Federated Models Across Clinical
Sites

Metrics ULSSJ ULSSM ALM Average
Baseline FL Baseline FL Baseline FL Baseline FL

Accuracy 0.74 071 066 0.70 0.79 0.75 0.73 0.72
F1-score 0.80 0.79 0.68 0.75 0.64 0.62 071 0.72
Precision 0.83 0.79 090 0.84 0.66 0.57 080 0.73
Sensitivity 0.78 0.80 0.55 0.68 0.63 0.67 0.65 0.72
Specificity 0.63 0.51 0.88 0.74 0.86 0.78 0.79 0.68

Table 3. Confusion Matrices of Baseline and Federated Models Across Clinical Sites

Metrics ULSSJ ULSSM ALM Average
Baseline FL. Baseline FL. Baseline FL. Baseline FL

False Negative 20 18 233 164 27 24 93 69
False Positive 15 20 31 68 23 36 23 41
True Negative 26 21 234 197 141 128 134 115
True Positive 71 73 285 354 45 48 134 158

At ULSSJ, the FL model slightly decreased in accuracy (0.74 to 0.71) and
precision (0.83 to 0.79), while showing a modest improvement in sensitivity (0.78
to 0.80). Performance at ULSSM exhibited the most pronounced gains from FL,
with accuracy improving from 0.66 to 0.70 and F1-score rising from 0.68 to 0.75.
Here, sensitivity increased substantially from 0.55 to 0.68, with a trade-off in
specificity (0.88 to 0.74). At ALM, both models performed strongly in terms of
accuracy and specificity, although the FL model showed a slight performance
decline across most metrics compared to the baseline.

Overall, these results suggest that federated learning can help improve gener-
alization in settings with heterogeneous data distributions by boosting sensitiv-
ity and F1-score—key metrics in medical screening, while slightly compromising
specificity. The federated approach may be particularly advantageous in under-
represented or more diverse clinical environments, as observed in the ULSSM
results.

5 Generalizable Insights about Responsible Application
of Machine Learning in Healthcare

This study explored the feasibility and performance trade-offs of applying FL for
glaucoma detection across multiple clinical sites with heterogeneous data sources
and workflows. While the baseline model, trained centrally on pooled data,
achieved a good overall predictive performance, the federated model demon-
strated competitive results for the context of a Al-powered glaucoma screening,
particularly in terms of Fl-score and sensitivity. Moreover, these results were
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obtained having a considerably small and private training set, and despite over-
coming some of the challenges of decentralized training in real-word clinical set-
tings. These findings reflect common trade-offs in some FL applications, where
performance may be modestly compromised due to local sample size limitations,
and domain shifts across institutions.

Importantly, the federated approach preserved institutional data privacy by
enabling local model training without transferring raw images, thus aligning
with GDPR requirements and the data governance policies of each hospital.
This privacy-preserving setup is especially relevant for scaling Al adoption in
healthcare, where regulatory and ethical constraints often impede centralized
data sharing. This setup can be relevant to obtain more, real and diverse data,
needed to develop and validate high-risk AI systems that include generalizable
machine learning models.

The observed performance gaps between the baseline and FL. models suggest
that further advances are needed, namely with the expansion of the available data
in the federated network. Future work should explore personalized FL strategies,
domain adaptation techniques, and more robust model aggregation methods as
the ones experimented in [I], to better address inter-site variability and improve
convergence.

This study also highlights the value of interdisciplinary collaboration in Al
for healthcare. Clinical input guided image selection, annotation, and contex-
tual interpretation, while machine learning expertise shaped model design and
evaluation. The diverse clinical settings, ranging from public hospitals to private
clinics, with varying patient profiles and imaging acquisition setups, offered a
realistic testbed for evaluating the generalizability of AT models across different
healthcare contexts.

Looking ahead, future research should prioritize the integration of fairness,
transparency, and interpretability into privacy-preserving FL networks. Clinician
trust and patient safety hinge not only on model performance but also on the
ability to identify failure cases, and adapt to local clinical practices. To this
end, incorporating continuous stakeholder feedback, and aligning development
processes with real-world clinical needs will be critical for the responsible and
effective deployment of Al-assisted glaucoma screening tools.

The practical application of this work is emphasized by new workflows, such
as the virtual hospital-based clinics [32123I25I27]. For instance, a "Virtual Clinic
for Glaucoma" is being initiated at ULSSJ, representing a new asynchronous and
remote digital consultation model designed to optimize healthcare resources for
both glaucoma specialists and patients. Given that glaucoma is a chronic disease
requiring constant monitoring, and with patient numbers expected to rise, cur-
rent clinical schemes are becoming unsustainable. In this virtual clinic model,
a technician performs a set of exams, and the physician evaluates the results
asynchronously, increasing the number of patients that can be monitored. This
process aids in the triage of patients referred for initial glaucoma consultations
and in evaluating low-risk patients, freeing up specialists’ time for more com-
plex and urgent cases. Such a workflow aims to improve the patient experience,
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accelerate diagnoses, and increase clinical capacity by leveraging technology for
data collection and analysis. The responsible integration of an Al-based support
solution for the robust classification of fundus images, as showed in this study, is
intended to directly assist physicians in their decision-making and optimize the
quality of patient referrals within this new paradigm.

6 Conclusion

This study demonstrates the feasibility of deploying a federated learning frame-
work for glaucoma detection using color fundus photography across multiple
ophthalmology centers, preserving patient data privacy while enabling collabo-
rative model development. Our results show that although the centrally trained
baseline model achieved slightly higher predictive performance considering the
set of metrics evaluated, the FL model offered a viable alternative with compet-
itive sensitivity and F1-score, particularly valuable in the scope of screening and
Al-based patient referrals (e.g. from general ophthalmology to glaucoma expert
units), and in contexts where training data cannot be shared due to regulatory
constraints.

By leveraging a diverse, multi-centric dataset and integrating clinical exper-
tise throughout the process—from labeling to deployment—this work illustrates
a realistic path toward scalable, privacy-conscious Al in ophthalmology. The
study also highlights current limitations in federated learning performance due to
data heterogeneity and inter-institutional variability, pointing to future research
directions in personalization, domain adaptation, and model explainability.

Ultimately, our findings support the growing potential of federated learning to
democratize access to high-performing Al models in healthcare, while respecting
ethical and legal boundaries critical for clinical adoption.
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