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Abstract. As the aging population grows, coupled with a shortage of
healthcare personnel, the demand for innovative solutions becomes im-
perative. Digital tools, such as medicine dispensers, offer promising av-
enues for remote healthcare delivery, alleviating the workload on pro-
fessionals. Nonetheless, home care organizations encounter challenges
in implementing and scaling these tools, ranging from a lack of aware-
ness about available options to difficulties in selecting the most suitable
tool for specific situations. This study investigates a recommendation
methodology for a medicine dispenser based on Omaha profiles from
Electronic Patient Dossier (EPD). Using the CRISP-DM methodology,
we designed a Positive-Unlabeled learning-based algorithm. We added
Explainable Artificial Intelligence (XAI) techniques, showing a feature
importance representation based on Shapley values, to enrich the trans-
parency and reliability of suggested interventions. The solution was eval-
uated with healthcare professionals from two healthcare organizations.
Although the technical performance of the algorithm was decent (recall:
0.9), they stated the data is not detailed enough to conclude whether a
medicine dispenser could be used, showing the need for human evaluation
during the process. This study addresses challenges like a sparse dataset
lacking detailed data and iteratively involving users during development
when performing research in a real life situation.
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1 Introduction

Elderly care is facing challenges due to personnel shortages. According to Gupta
Strategists, a shortage of 67,300 health personnel in the elderly care in 2031
is realistic in the Netherlands. Medical technologies could be of help in this by
lightening tasks and preventing elderly care [I5]. Examples include video calling,
medicine dispensers, lifestyle monitoring, and daily structure support. However,
these technologies are not used as frequently as possible.
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Fig. 1: The imagined workflow.

Research performed by Nedap Healthcare, an IT company that facilitates an
Electronic Patient Dossier (EPD) platform, shows that staff involved in patient
care are sometimes unaware of the available healthcare technologies within their
organization. In addition, they find it challenging to determine which patients
would benefit from these technologies. This lack of awareness and difficulty in
identifying suitable patients is the core problem preventing the successful scaling
of healthcare technology.

We performed a case study to explore the use of machine learning for recom-
mendations on available healthcare technology based on EPD data. The goal is
to develop a tool that gives advice whether a medicine dispenser could be used
by a elderly patient based on EPD data. Besides the technical implementation
and evaluation, we evaluated the results with the healthcare professionals.

The process including this advice will look like the diagram shown in Figure
The nurse will perform an intake call with the patient. Secondly, the nurse
will create a plan of approach by filling in the signs and symptoms, and the
interventions that need to be taken. Based on this, the algorithm decides whether
a healthcare technology could be used. As the healthcare professional is in the
lead, they can decide to follow this approach or to neglect it. If accepted, the
technology is added to the to be performed interventions.

In this paper, we explain our methodology, discuss the challenges we faced,
and present our key findings. We aim to use explainable AI to support and
substantiate decision making.

Our main contributions are: (1) applying PU learning to handle incomplete
labels, (2) evaluating machine learning models and their interpretability, and (3)
involving healthcare professionals in the evaluation. The remainder of this paper
is structured as follows. In Section 2, we discuss related work, followed by the
methodology and results in Section 3. We discuss and conclude this study in
Sections 4 to 6.

2 Related Work

This section covers the two main topics related to this study. First, we discuss
Explainable Al and its relevance as we will use this in understanding the algo-
rithms. Afterwards, we explain techniques related to PU learning as our dataset
has no negative labels.
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2.1 Understandable decision-making

It is important to understand why and how machines make certain decisions.
Explaining decision-making to humans builds trust in Al-systems, which encour-
ages the use of Al-based algorithms as assistant in various domains [T4J7J5]. This
study investigates different techniques of making the outcome of the machine
learning algorithm interpretable and understandable for healthcare workers.

Explainable AI techniques There are several types of XAl techniques to
make a machine learning model interpretable and understandable [8]. These
techniques help users understand how models generate their predictions and
enable trust in their outputs. Well-known techniques are feature importance
(for global interpretation) and SHAP (for local interpretation) [10].

Feature importance techniques states the relative importance when making
a prediction showing the most influential features. One common method is Per-
mutation Importance. It evaluates the impact of shuffling a feature’s values on
model performance, where a significant decrease in performance indicates the
feature’s importance to the model. Feature importance and permutation impor-
tance are easy to compute and interpret, however they may be less effective for
models with complex interactions between features.

Another technique is SHAP. This technique is a game-theoretic approach to
explain output of an ML model, providing both local and global interpretability.
SHAP values explain the contribution of each feature to a particular prediction
by calculating the difference between the prediction made with and without the
feature. [9]. According to Dwivedi et al. [3], an important advantage of SHAP
values is that it is transparent and locally interpretable. This makes SHAP valu-
able in situations where understanding individual model decisions are crucial.
For example, in healthcare a physician might want to understand the factors
contributing to a patient’s predicted risk to a disease. SHAP can provide insight
in individual features such as age and medical history. Feature importance as
discussed above provides insight of how important features are for the entire
population, ignoring the individual scenarios.

User-centered explainable AI While algorithm-centric methods, such as
SHAP and feature importance techniques, provide technical insight into model
behavior, they often fail to consider whether these explanations are meaningful
or useful to the end users of systems [I47]. Research has shown that explana-
tion techniques are often designed from the perspective of Al experts and do not
necessarily align with the needs of end users, such as healthcare professionals [4].
Explanations that make sense to Al experts may not be as intuitive for domain
experts or users, who rely on Al for decision making.

Different stakeholders interact with Al systems in various ways, requiring tai-
lored explanations to meet their specific needs. Burnett et al. [2] emphasize that
explanations should be adapted to the expertise of the users, whereas Wang et
al. [16] discuss how user expectations influences the perception on explainability.
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Human-centered design methods focus on identifying what end users need and
how the design can respond to these needs [I1].

Liao and Varshney [7] argue that a well-crafted explanation does not neces-
sarily translate into effectiveness or benefit for the person interacting with an
Al-system. There are human-centered design techniques that are important to
achieve trust and decision-making. Kim et al. [5] propose three key factors for
ensuring meaningful explanations. First, the contextualized quality of the ex-
planation, e.g., is it satisfying, useful or trustworthy? Second, its contribution
to human-Al interaction, e.g., improvement of user’s perception on trustwor-
thiness of AI system. Third, the contribution of the explanation to human-Al
performance: does it help users complete tasks more effectively?

These factors highlight the necessity of shifting from a solely algorithm-
centric approach to one that develops explanations that are not only technically
relevant and logical, but also useful for end users. Ensuring that explanations
align with the end user needs strengthens trust in Al systems and support for
more effective decision-making for those who rely on them.

2.2 Positive Unlabeled learning

PU learning refers to a learning technique in which the training set contains only
positively labeled and unlabeled data points, with no explicitly labeled negative
samples [I]. Unlike traditional binary classification, where the training set con-
sist of positive and negative labels, PU learning assumes that the unlabeled data
can belong to either the positive class or the negative class but it is unknown.
The primary challenge is distinguishing between true negative samples and un-
observed positive samples.

There are several examples of applications in which PU data is being used.
For example, personalized advertising methods label visited pages and clicks
as a positive instance, but this does not mean that all other pages and ads
are not necessarily uninteresting, therefore it cannot be labeled as a negative
instance. Another common area with PU data is the medical domain. Medical
records contain information about diseases that patients have and not diseases
that patient do not have. The unlabeled diseases in this case do not mean that
the patient does not have the disease. It can be unnoticed or not diagnosed by a
health professional [I]. Several studies show different techniques on how to handle
data that only have positive or unlabeled labels. In this study we evaluated two
types of PU learning techniques: two-step approach and PU bagging approach.
Both approaches differ in complexity and performance depending on the data.
We compare both approaches to obtain information about which technique suits
this application best.

Two-step approach This method aims to find reliable negative samples from
unlabeled data in two steps: (1) train a classifier on positive samples to identify
reliable negative labels based on low predicted probabilities, and (2) use these
reliable negatives with the positive samples to train a (semi-)supervised model.
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The two-step approach assumes separability [I3I] and smoothness, which means
that it assumes that all positive samples are similar to the labeled samples and
the negative samples are very different from the labeled samples, so basically all
positive instances have similar behaviour [6]. A challenge within this approach
is defining the reliable negative samples. If the defined reliable negatives are not
representable as real negatives, the system will not learn sufficiently.

PU bagging approach Another technique can be described as a bagging strat-
egy. Mordelet and Vert [12] studied this approach by using a bagging Support
Vector Machine (SVM) to learn from positive and unlabeled data. They state
that the bagging methodology performs as good as the non-bagging methods.
They compare their performance to the biased SVM, which directly discrimi-
nates between positive and unlabeled examples by rebalancing misclassification
costs. They also compare against one-class SVM and a baseline ranking ap-
proach. The ranking approach ranks the unlabeled data by their similarity to
the average positive data samples. Their bagging approach outperforms state-
of-the-art methods on simulated data. However, the difference in performance is
minimal on real world data. Performance of the bagging approach relies on the
quality of the random created subsamples drawn from the unlabeled instances. If
the random subsamples do not represent the distribution of the data sufficiently,
the classifier will find it difficult to generalize the results [12].

The PU Bagging approach operates as follows. First, a training set is con-
structed using all known positive data points along with a random sample of the
unlabeled data points. A classifier, such as an SVM, is then trained using the
positive and unlabeled data points, where the unlabeled samples are initially
treated as negative. Once the classification model is trained, it is applied to
the remaining unlabeled samples (those excluded from training) to obtain clas-
sification scores, commonly referred to as ‘Out-of-the-Bag’ (OOB) scores. This
process is repeated multiple times, averaging the OOB scores for each unlabeled
data point. Importantly, the classifier is retrained in each iteration using a newly
sampled subset of unlabeled data. This iterative approach ensures that every un-
labeled sample receives an OOB score by the end of the cycle, allowing for the
computation of the likelihood that an unlabeled data point is either positive or
negative [12].

3 Method and Results

The iterative method Cross-Industry Standard Process for Data Mining (CRISP-
DM) is used in this research. E| The first steps in this method are business and
data understanding, after which the data is prepared, the models are trained
and evaluated. As it is an iterative method, earlier steps are revisited when
necessary. When the model is optimized, it can be deployed. The overview in
Figure [2] visualizes this process.

4 https://www.ibm.com/docs/it/SS3RA7_18.3.0/pdf/ModelerCRISPDM. pdf
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Fig. 2: The CRISP-DM cycle.

To effectively visualize the decision-making process of the ML algorithm,
XAI methods were used. It is important for us as researchers to understand
the decision-making of the model, but also for the end user to ensure trust in
systems. In the next sections, we will explain the performed CRISP-DM steps
in more detail, followed by the Explainable ATl and generalizability components.

3.1 Business Understanding

It is important to start this research with the business understanding phase to
clearly define the goals and objectives. To gain insights into the context from the
perspectives of both healthcare organizations and the EPD software company,
we interviewed a data scientist and an implementation expert from the company.

EPD software company The EPD is developed by a software company named
Nedap Healthcare and they are committed to increase its performance. They
observed that, despite positive feedback on the use of digital tools, healthcare
devices were not frequently used. They discovered that healthcare professionals
are often not aware that a digital tool is suitable for a patient. Therefore, Nedap
Healthcare aims to create an algorithm that advises healthcare professionals on
when to use a specific tool.

Elderly care organizations Multiple elderly care organizations use the EPD
system of Nedap Healthcare, called ONS. They recognize the benefits of using
healthcare devices, such as reducing the workload. The elderly care organizations
agree with the software company that the care professionals are not aware when
to use these tools. They believe that incorporating advice within the EPD would
enhance awareness.
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Table 1: An overview of the number of medicine dispensers per organization.

Organization Total number of cases Positive labels (%) Negative labels

1 4,028 160 (3.97%) Unknown
2 29,489 375 (1.27%) Unknown
3 4,824 166 (3.44%) 40
4 9,439 5 (0.05%) 125

3.2 Data Understanding

The data used to develop the ML algorithm is derived from the Omaha profiles.
These profiles are an outcome of the Omaha system which is a standardized
framework for reporting and documenting symptoms and corresponding actions
in the healthcare sectorEI These Omaha profiles provide an overview of why an
individual receives elderly care. The profiles includes multiple levels, such as
symptoms, actions, and focus areas.

Elderly care professionals manually annotated the data, identifying instances
where a patient could benefit from using a medicine dispenser. This is annotated
as ‘positive’. As a result, the dataset includes both positive and unlabeled in-
stances. The unlabeled data could be either positive or negative, resulting in
the need for special data preparation methods. Only a small part of the data
contains positive labels, as can be seen in Table [I| shown in percentages. The
negative labels identify situations in which a medicine dispenser can not be used.

For the Exploratory Data Analysis, the library YData Profiling is usedﬁ This
shows in one overview the basic statistics, such as missing values, minima and
maxima, and the distribution. Additionally, the inclusion and exclusion criteria
for using a medicine dispenser were explored in collaboration with the domain
experts. In general, a medicine dispenser is only useful when a patient is still well
enough to take the medication by themselves, possibly with help of a partner.
The sweet spot between being not too good and not well enough is the situation
in which a medicine dispenser should be advised. Criteria such as ‘terminal’, ‘just
included in care’, ‘severe cognitive issues’, and ‘wandering’ were seen as exclusion
criteria for not being able to use a medicine dispenser anymore. Criteria to denote
the phase before a medicine dispenser is helpful were not known.

The dataset comprises multiple json files, each containing a report for in-
dividual patients. These reports include information such as symptoms, scores,
and interventions. These data are all single data points, however there is a rela-
tionship between the symptom of a patient and the corresponding intervention.
We captured this relationship by creating a path including the symptom and
the corresponding intervention, which is discussed in more detail in the next
subsection.

5 https://www.omahasystem.nl/over-omaha-system/werken-met-het-omaha-system
S https://docs.profiling.ydata.ai/latest/
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3.3 Data Preparation

In this phase, the raw data is converted to data that is suitable for the mod-
eling phase. After exploring the data and consulting with the domain experts,
we made the conclusion that the areas of interest (symptoms, scores, and in-
terventions) were not properly connected in a cause-and-effect relationship. To
resolve this, pathways of the different features were created to establish the cause-
and-effect connections. For example, we combined the following features: symp-
toms ‘unable to take medication without help’ and intervention ‘medication
__administration’ together as a pathway. Additionally, PU learning, data balanc-
ing, and feature selection techniques were used to prepare the data.

PU Learning The data only consists of positive labels or unlabeled data. To
still be able to train an algorithm on this data, we used PU learning. As explained
in Section [2.2] two different methods were evaluated to obtain negative labels:
the two-step approach and the bagging approach. During training, the two-step
approach was much faster: this method took approximately three seconds, while
the bagging approach took three hours. The reason for this is that the bagging
approach relies on bootstrapping, which involves repeatedly resampling the data
and retraining the model multiple times.

Data balancing To overcome the issue of unbalanced data, where the unla-
beled data significantly outweighs the group of positive data points, a random
undersampling technique is used in which data points from the unlabeled data
were removed from the dataset until the dataset was balanced. [ As can be seen
in Table|[l] the data is unbalanced as only approximately 2% of the data points
are labeled.

By using PU learning and the undersampling method, four datasets were
created, namely PU learning - Two-step approach, PU learning Bagging
approach, Undersampling, and the Original dataset. These datasets were
used in the modelling phase and evaluated in the evaluation phase.

Feature selection After integrating paths as features, the dataset resulted in
having a large number of features. To reduce the feature set, Chi-squared feature
selection was appliedﬁ The number of features, ranging from one to 500, were
evaluated with steps of twenty. For each set of features (k), the machine learning
algorithm ran and its performance was evaluated to identify the optimal number
of features that most influence algorithm’s outcome. The implementation of the
chi-squared feature selection is shown in the pseudocode Algorithm [f}

The result of the different sets of features can be seen in Figure [3] From 250
features onward, the performance did not increase. Therefore, these 250 features
were used in model training.

" https://imbalanced-learn.org/stable/references/generated/imblearn.
under_sampling.RandomUnderSampler.html

Shttps://scikit-learn.org/stable/modules/generated/sklearn.feature_
selection.chi2.html
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Fig. 3: The accuracy (left) and Fl-score (right) stabilizes around 250 features.

Algorithm 1 Feature Selection and Model Evaluation with MLflow Logging

1: for each dataset type in datasets do
2: Extract features X and labels y

3: for each model type and model object in models do

4: for each value k in k_values do

5: Apply chi-squared feature selection with k features (chi2__selector)
6: Select the k best features from X (X chi2_selected)

T Perform cross-validation:

8: Compute accuracy, precision, and recall scores using CV
9: Log parameters using MLflow:
10: Dataset type, model type, and k value
11: Log metrics using MLflow:
12: Mean accuracy, precision, recall, and F1 scores
13: Log the trained model using MLflow

3.4 Modelling

Three supervised learning models were trained on the datasets, namely a Deci-
sion tree, an SVM, and a Random Forest. We used the scikit-learn package and
the latest implementations of these algorithmsﬂ These models were chosen since
they differ in complexity and transparency. Algorithm [I] shows the pseudocode
for modelling. As can be seen, first a dataset is chosen, followed by a model type.
The next step was to perform the feature selection and train the model based
on these features. The last step is to log the results to MLFlow, as explained in
Section

The model trained on the ‘normal’ dataset is our baseline model. This dataset
is cleaned, however, no balancing or PU learning techniques have been used.

3.5 Evaluation

The models were evaluated both on a technical level and from the perspective
of a domain expert.

9 https://scikit-learn.org/stable/supervised_learning.html
10 https://mlflow.org/
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Table 2: An overview of the performance of the models.

Model type Accuracy F1 Precision Recall
PU Bagging Decision Tree 0.724 0.753 0.681 0.842
PU Bagging Random Forest 0.740 0.769 0.690 0.867
PU Bagging SVM 0.772 0.790 0.734 0.855
PU two-step Decision Tree 0.942 0.940 0.980 0.903
PU two-step Random Forest 0.940 0.938 0.968 0.909
PU two-step SVM 0.882 0.881 0.889 0.873
Undersampling Decision Tree 0.785 0.770 0.826 0.721
Undersampling Random Forest 0.782 0.776 0.796 0.756
Undersampling SVM 0.818 0.817 0.822 0.812
Normal dataset Decision Tree 0.624 0.398 1.000 0.248
Normal dataset Random Forest 0.600 0.338 0.944 0.206
Normal dataset SVM 0.540 0.146 1.000 0.079

Technical evaluation For technical and testing purposes, healthcare profes-
sionals have created a separate test set, containing both negative and positive
samples, to evaluate the model’s performance on unseen data, see Table [ We
used 165 negative samples and 165 positive samples as a test set, which were not
used during model training. MLflow was used in the technical evaluation of the
model. Performance metrics that were used are precision, recall, F1-score, and
accuracy. Also, the feature importance were saved to understand which features
were most important in prediction.

An overview of the results are shown in Table Pl We observe that the two-
step method resulted in the highest performance. The performance between the
different models did not differ much. However, as the focus was on the recall,
the random forest performed the best.

Algorithmic explainability The XAI techniques SHAP and feature impor-
tance were used to understand the reasoning of the model. The features making
the biggest impact denoted information about patients not able to take medica-
tion without help, patient who do not follow the dosage schedule, and patients
with limited recall of recent events. These insights and decision-making informa-
tion were also evaluated with the healthcare professionals to evaluate the relation
between technical model logic and real-world clinical reasoning.

Evaluation with the domain experts As discussed above, the results and
model reasoning were discussed with the healthcare professionals of two health-
care organizations during two separate focus groups. Seven cases were discussed
at one organization and three at the other. The difference in the number of
cases was due to the depth of the discussions held during the sessions. We chose
to delve deeper into these cases to gather more in-depth information about the
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way of working of the healthcare workers and their decision-making process. The
cases were used to understand if they would advise a medicine dispenser for pa-
tients based on the features that was used in training. The features represented
features with the most influence on the model outcome, according to SHAP and
feature importance.

A case contains only the information that was used during training of the al-
gorithm. Specifically the key features that contributed to the final decision which
are obtained by using SHAPley values and feature importance techniques. The
case was, in the beginning, shown anonymously to prevent the healthcare pro-
fessional from recognizing the patient and having background information which
are not shown in the case. The healthcare professionals were asked to read the
case and to decide if a medicine dispenser could be used in this situation. After
this, they were asked to open the dossier of this patient and to use information
from the EPD to decide if this patient could use a medicine dispenser. Their
task was to decide if they would advise something different based on the full
data and which information from the EPD they used for this decision. The last
step was to compare that to the result from the algorithm and to discuss why
this could be different if this was the case.

In all cases the healthcare professionals were not able to decide whether a
patient could use a medicine dispenser and needed more information than only
the Omaha profiles. Especially the data from the free text fields within the EPD
was used to understand the nuance of a selection in the Omaha profile. An
example is the Omaha tag that the patient has a limited ability to concentrate.
The healthcare professionals needed the additional information from the free
text fields to inform them how limited this ability was and if there was, e.g., a
partner living with this patient that could help to take the medicines on time.
All in all, they needed more detailed context than only standardized features.

User-Centered Explainability To enhance the usability of the Al by the
healthcare professionals, adding user-centered XAl is important to create trust
in a system [I4]. In this case, the healthcare professional needs to understand
why a medicine dispenser could be used based on the available data. During our
focus group sessions, we explored what types of information healthcare profes-
sionals need and how this information should be presented. Through feedback
on the cases, which showcased key elements based on SHAP and feature impor-
tance values, we found that the presented information is not intuitive enough to
support confident decision-making. This means that even though we use explain-
able Al to clarify a model’s reasoning, the current explanation does not meet
the requirements nor expectations of the healthcare professionals. They require
more contextual information, such as severity of a patient’s memory issues, to
make well-informed decisions. Unfortunately, these kind of contextual data is
not included in the Omaha profiles on which our model is trained. As a result,
we are unable to provide the healthcare professionals with explanations that are
fully understandable or useful due to limitations in the available data.
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Table 3: An overview of models performance where one healthcare organization
is left out as test set.

Model type Accuracy F1 Precision Recall
PU Bagging Decision Tree 0.700  0.002 0.001 0.600
PU Bagging Random Forest 0.705 0.002 0.001 0.600
PU Bagging SVM 0.788  0.003 0.002 0.600
PU two-step Decision Tree 0.800  0.750 1.000 0.600
PU two-step Random Forest 0.800  0.750 1.000 0.600
PU two-step SVM 0.800  0.750 1.000 0.600
Undersampling Decision Tree 0.600 0.714 0.556 1.000
Undersampling Random Forest 0.500 0.667 0.500 1.000
Undersampling SVM 0.500 0.667 0.500 1.000
Normal dataset Decision Tree 0.500  0.000 0.000 0.000
Normal dataset Random Forest 0.500  0.000 0.000 0.000
Normal dataset SVM 0.500  0.000 0.000 0.000

3.6 Generalizability

Lastly, we explored the generalizability of the trained ML model. The goal is
to determine whether a model trained on data from a specific healthcare orga-
nization could be effectively applied to a different healthcare organization. To
investigate this, the ML model was retrained, this time excluding the data from
one healthcare organization (healthcare organization 4 in Table (1) during the
training phase. The data from the excluded organization was then used as a test
set to evaluate the model’s performance. The results are shown in Table [3] As
can be seen, the models struggle to perform well in this situation, indicating
difficulties in learning and generalizing. This was discussed with the healthcare
professionals. They stated that it is very different per organization, and also per
team, how the Omaha profiles are filled in. Besides, the user has the freedom in
the system to make all different combinations of symptoms and interventions,
as this is not restricted in the software. This creates the very diverse and thus
sparse dataset.

4 Discussion

During this research project the goal was to advise if a medicine dispenser could
be used by patients from elderly care. As this decision is based on the medical
status of the patient, reports from an EPD were used as input.

4.1 Methodology and results

The CRISP-DM process model was used to understand the context and the data,
and using this information to prepare the data to be able to train and evaluate
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a model using this data. The following sections reflect on this methodology and
the technical results.

We considered the CRISP-DM model as useful. It helped to structure the
research and to focus on the context first before diving into the data. However,
we would advise to focus more on the business and data understanding phases as
this would have revealed earlier in the process that the data would not suffice.
The deployment phase was not performed as the evaluation with the domain
experts indicated a next iteration is necessary before the model would represent
the situation sufficiently. This further highlights the necessity of involvement of
all stakeholders in CRISP-DM, especially during the first phases.

The technical results seemed promising: a recall around 0.9 was achieved.
However, when evaluating the results with the domain experts, they stated that
based on only the Omaha profiles, which were used as input for the algorithm,
they could not decide whether a medicine dispenser would indeed be useful.
Also, when the trained model was evaluated using unseen data from another
organization, the model did not perform well (see Table . One explanation
could be that it is due to overfitting on the data of an organization, and to finding
patterns that are not there. The second explanation is a result of different ways
of reporting by the teams, creating a dataset with different paths different than
those found in the training data.

As the healthcare professionals indicated that this tool would help them, we
advise to improve the tool with free text fields and to evaluate it again. Our
hypothesis is that using data from free text fields would improve the model and
its explainability, resulting in a higher user satisfaction.

4.2 Challenges

During this research, we encountered challenges due to performing a real world
use case.

Positive Unlabeled data The first challenge was handling data with only
positive labels. Two PU learning techniques were evaluated: the two-step and
bagging approaches. The two-step approach was faster and performed better.
The reason it is faster is that the bagging approach relies on bootstrapping, which
involves repeatedly resampling the data and retraining the model multiple times.
The reason it performs better could be that the percentage of positive labels
was very small, which the two-step approach handles better. If sufficient reliable
negative samples can be found during the first step of the two-step approach,
it is possible to train a decent classifier to recognize patterns between positive
and negative samples. In this case, we expect the performance of the two-step
approach to be more reliable. The performance of the bagging approach relies
on the quality of the random subsamples drawn from the unlabeled data. If the
random subsamples do not represent the underlying distribution of the data, the
classifier can have a hard time to find patterns and generalize, which can result
in lower performance compared to the two-step approach [12].
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Sparse dataset Secondly, as multiple paths were possible to state the same
medical situation, the dataset was sparse. Although we did not experience this as
a problem during modeling, during evaluation we encountered that the algorithm
tested on data from other elderly care teams resulted in bad performance as the
conditions were reported differently resulting in different paths in the data. This
makes it infeasible to make this algorithm generalizable to be used by multiple
organizations and teams. A solution is to train an algorithm for every team,
however due to the small dataset per team the expectation is that the results
will not be trustworthy. Another topic to investigate is evaluating a model that
does not take into account the cause-and-action relationship and takes every
data point as a single feature. This will solve the issue of a sparse dataset since
it does not take into account all possible combinations of features relationships.
A second suggestion is to only use the ‘symptom’ and ‘action’ data in the path
as this seems the core information from the dataset. Using only these two fields
in the paths, fewer paths are possible, resulting in a less sparse dataset with
still sufficient information. A third solution is to use dimensionality reduction
techniques such as principle component analysis. However, this makes it hard to
create an explainable model which was one of the goals of this research. Future
work should focus on experimenting with dimensionality reduction techniques
which keep the explainability high.

Technical evaluation versus real-world evaluation Thirdly, the technical
evaluations in comparison with the domain experts evaluation showed different
results. Although the (explainability) results from a technical perspective when
trained and evaluated on data from the same teams seemed promising, the eval-
uation with the domain experts showed that it seems not intuitive to create an
algorithm based on the data from the Omaha profiles only. The experts needed
more contextual data from the open text fields to understand the nuance and to
be able to decide if a medicine dispenser could be used by a patient. Although
the addition of the open text fields is possible from a technical perspective, there
is a privacy perspective that needs to be taken into account as well. Based on this
data, there is a chance that the researchers could deduce which medical dossier
belongs to which patient, which raises concerns over privacy. One possibility to
use this data is to anonymize and pseudonymize it before it is used. Future re-
search should investigate how to integrate contextual data from patient reports
while ensuring privacy.

5 Generalizable Insights about Responsible Application
of Machine Learning in Healthcare

The main takeaway when looking at a responsible application of machine learn-
ing in this domain is that one should always evaluate the results with the domain
experts and/or end-users. Although the algorithm may seem technically valu-
able, it could be the case it is not from a domain experts view. Explainable Al
techniques could help in this by showing the reasoning of the underlying model.
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This could strengthen the conversation and make clear which mistakes are made
by the model. It helps as an interface between the data scientists and the domain
experts. Our research has shown this in this use case: the explainable AT compo-
nent helped by understanding if the algorithm focused on the right information.
This also revealed that the information needed by the healthcare professionals
to understand the model was not in the data. This is an important evaluation
point which would have not been found when not using XAI techniques.

Evaluation with the end-users is also an important aspect since they have to
work with the created tools. If the tools do not meet end-users’ expectations,
adoption is likely to be low, resulting in a less effective product. This would also
have been the case when we would have implemented this tool in the workflow
without evaluation. The XAI component would give explanations which are not
useful for the end-users, resulting in lower trust and thus adoption.

Additionally, it should be recognized by the healthcare professional when the
AT provides a wrong advice. If this is missed, the effects could be dangerous.
An example from this project is that if a patient gets a medicine dispenser
while one is not able to use it, the patient will not take the medicines correctly
which creates possibly an unhealthy situation. Evaluating the solution with and
keeping the control by the healthcare professionals could decrease the chances
of creating this undesirable situation as well.

6 Conclusion

During this research project, a case study was performed using the Omaha pro-
files from the EPD system to predict if a medicine dispenser could be used by
a patient. The CRISP-DM process model was adopted to understand the con-
text, prepare the data and create and evaluate the models. Technically challenges
were encountered, examples are a positively unlabeled and sparse dataset, which
included different features per organization, creating the necessity to use tech-
niques to create a dataset that could be used for modeling. Although the tech-
nical evaluation seemed promising, the evaluation with domain experts showed
that the data used did not give enough information to give an advise based on
the data. Additionally, the multiple challenges showed the difference between
a theoretical case compared to a case from a real life situation. An important
takeaway from this study is the need to involve end-users earlier and to evaluate
whether the available data provides sufficient information to support decision-
making. Future research should focus on exploring the possibility to include more
data from the open text fields. The hypothesis is this will improve the algorithm,
resulting in a higher user satisfaction.
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