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Abstract. Federated learning (FL) has emerged as a promising ap-
proach to facilitate collaborative model training while ensuring data pri-
vacy. FL faces challenges related to heterogeneity in data distributions,
interpretability of model decisions, and optimization of model architec-
tures across decentralized nodes. This paper proposes a framework that
combines FL with neural architecture search (NAS) and explainable large
language model (XLLM) to overcome these issues and improve clinical
outcomes. We test this approach in three medical areas. NAS is used to
discover optimized model architectures tailored to heterogeneous medi-
cal data across decentralized hospitals. XLLMs are employed to interpret
and communicate complex decision-making processes. Experimental val-
idation on benchmark datasets for each clinical use case indicates im-
provements in predictive accuracy and clinical relevance compared to
conventional federated approaches.
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AI, large language models, clinical decision support.

1 Introduction

The adoption of artificial intelligence (AI) in healthcare has opened new fron-
tiers in clinical diagnostics, personalized treatment planning, and interpretation
of medical images [13]. Among the many paradigms of AI, federated learning
(FL) has emerged as a privacy-preserving strategy that enables collaborative
model training across decentralized data silos without requiring the exchange of
sensitive patient information. This is important in medical environments con-
strained by data protection regulations such as HIPAA [4] and GDPR [32].

Despite its promise, federated learning faces several challenges [21]. First,
data heterogeneity – resulting from variations in imaging protocols, populations,
and devices – can impair global model convergence and reduce generalizability.
Next, the black-box nature of the deep models inhibits interpretability, which is
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a key requirement in clinical settings where human oversight and explainability
are critical. Finally, existing FL workflows typically use static architectures that
may not adapt well to diverse institutional data distributions [34].

To overcome these limitations, our proposal is to combine FL with two core
enhancements: Neural Architecture Search (NAS) [29] and Explainable Large
Language Model (XLLM). NAS allows each institution to discover optimized
local architectures while contributing to a federated learning process. XLLM ap-
proaches enhance model transparency by providing contextual, human-readable
explanations of decisions, bridging the gap between the black-box nature of AI
and clinical reasoning.

Our approach is evaluated in three high-impact medical use cases: (1) early
detection of premalignant colorectal polyps [10], (2) diagnostics for cervical can-
cer [5], and (3) cognitive assessment for Alzheimer’s disease via dementia stage
classification [8]. Through a combination of zero-shot NAS [18], knowledge dis-
tillation [9] and federated explainability [2], we show measurable improvements
in predictive accuracy, interpretability, and practical deployment readiness.

This paper intends to address the following objectives: (1) the development
of a privacy-preserving framework for training clinical models on decentralized,
heterogeneous medical datasets; (2) improving model performance and adapt-
ability using zero-shot NAS to enable automated, local architectural optimiza-
tion; (3) integration of XLLM principles to enhance interpretability and provide
clinically meaningful explanations for AI decisions.

2 Background Information

The increasing adoption of artificial intelligence (AI) in healthcare requires sys-
tems that are accurate, yet interpretable, adaptable, and privacy-preserving. In
order to achieve these goals, several technologies have to be employed, such as
federated learning, neural architecture search, explainable large language models,
and knowledge distillation. Together, they can define a framework for trustwor-
thy clinical AI, as depicted in Fig. 1.

2.1 Federated Learning

Federated Learning, as introduced by Mahan et al. in [23], enables a decentralized
model training across multiple devices while preserving privacy. As mentioned
in [34], this is a decentralized machine learning paradigm that enables multiple
distributed clients (e.g., hospitals, clinics, or diagnostic centers) to collabora-
tively train a shared global model without exchanging raw data. In a typical
FL setup, each client downloads the current international model, performs local
training using its private dataset, and then uploads model updates (gradients or
weights) to a central server. The server aggregates these updates to refine the
global model, often using strategies such as the federated averaging (FedAvg).
This cycle repeats for several rounds until convergence is reached.
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Fig. 1: Federated learning framework with NAS, knowledge distillation, and ex-
plainable large language models.

The primary motivation behind FL is data privacy. In sensitive healthcare
domains, patient data is protected by stringent regulations, and ethical consider-
ations often prohibit centralized data sharing. FL addresses this by ensuring that
patient data remain localized to the institution where it was generated, while
still contributing to a broader training objective. This capability is particularly
beneficial when the pooling of diverse datasets can significantly enhance model
generalization, but it is often infeasible due to legal, institutional or technical
constraints.

Beyond privacy, federated learning also brings practical advantages benefits
in terms of scalability and data utilization. Institutions with limited data sets
or rare diseases cases can participate in global training and benefit from the
collective model improvements, which is usually not possible in traditional cen-
tralized learning paradigms. Moreover, FL can easily adapt to edge computing
environments, where models are trained directly on medical imaging devices or
wearable sensors, and updates are shared asynchronously [26].

However, the advantages of FL are counterbalanced by several key challenges,
such as statistical heterogeneity. Data distributions often vary across clients due
to differences in patient demographics, imaging devices, annotation practices, or
diagnostic criteria. This non-independent and identically distributed (non-IID)
nature of client data can degrade convergence and cause the global model to un-
derperform on outlier distributions. Another major challenge is the heterogeneity
of the system, where clients have varying computational resources, bandwidth,
and availability, leading to unequal participation and possible biases in model
training.

Standard FL setups typically assume a fixed architecture model shared across
all clients. While this simplifies the aggregation process, it limits the systemt,s
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ability to adapt to local data characteristics, especially when clients differ in data
modalities or complexity. This rigidity can lead to underfitting on certain clients
and overfitting on others. Additionally, model interpretability remains a major
concern. Since FL is typically based on deep neural networks, the resulting mod-
els often operate as black boxes, making it difficult for clinicians to understand
or trust their decisions, especially in high-stakes environments for the diagnosis
of cancer or neurodegenerative diseases [7].

2.2 Neural Architecture Search

Neural architecture search (NAS) is a subfield of automated machine learning
(AutoML) focused on the automated discovery of optimal neural network archi-
tectures for a given task and dataset [3]. Traditionally, neural network design
has relied heavily on expert intuition and manual experimentation, which can be
time-consuming, suboptimal, and infeasible in highly variable environments such
as decentralized healthcare systems. NAS addresses this limitation by automat-
ing the architecture design, enabling more efficient and often higher-performing
model development.

A typical NAS framework consists of three key components: a) a search space
– the set of all possible architectures, b) a search strategy – reinforcement learn-
ing, evolutionary algorithms, or gradient-based methods, c) and a performance
estimation strategy – early stopping or proxy tasks. The goal is to explore this
space efficiently and identify architectures that optimize a target objective, such
as classification accuracy, latency, or model size [33].

In the context of federated learning, NAS offers a particularly compelling
solution to statistical heterogeneity, one of the key challenges of FL. When data
distributions vary across clients – as is common in healthcare due to different
populations, imaging modalities, and institutional protocols – a single shared
model architecture may not perform uniformly well. NAS allows each client to
tailor its model architecture to local data characteristics, thereby improving
representation capacity and model fit. For example, a smaller convolutional ar-
chitecture might suffice for one hospital with simple, high-quality data, while
another (with more complex cases) may benefit from a deeper or hybrid model.

Integrating NAS into a federated framework is not an easy task. One of the
primary challenges is the inconsistency of architectures across clients. Traditional
FL methods, such as FedAvg [17], require all clients to share an identical archi-
tecture to aggregate weights. With NAS, clients may end up with structurally
different models. This makes direct parameter aggregation infeasible. To ad-
dress this, we adopt a knowledge distillation-based aggregation strategy. Instead
of sharing model weights, each client shares soft predictions (logits) on a shared
public or synthetic dataset. A centralized student model then distills these pre-
dictions into a unified architecture, effectively learning a consensus model that
captures the knowledge from heterogeneous client models [6].

To further enhance scalability, we use zero-shot NAS, a lightweight and effi-
cient variant that evaluates candidate architectures without full training. Zero-
shot NAS drastically reduces computational overhead. This makes it feasible
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to deploy across multiple FL clients with limited hardware resources. As a re-
sult, the framework is suitable for both academic-scale datasets and real-world
deployments in distributed hospital networks.

Moreover, our use of NAS is closely coupled with clinical objectives. Rather
than optimizing solely for accuracy, we incorporate multiple constraints and
evaluation criteria, including inference latency (for specific settings), parameter
count (for embedded devices), and interpretability (through attention mecha-
nisms and hierarchical layers).

2.3 Explainable Large Language Models

Large language model (LLM) approaches have transformed natural language pro-
cessing (NLP) [22,30], demonstrating strong performance on complex tasks such
as question answering, summarization, and contextual reasoning, often in zero-
or few-shot settings. In the medical domain, specialized LLMs like BioBERT [14],
BioGPT [20], and Med-PaLM [27] have shown great promise in understanding
and generating clinically relevant text. However, their opaque decision-making
process limit their practical adoption in safety-critical environments such as
healthcare.

To address this, recent advances in explainable artificial intelligence (XAI)
have been extended to LLMs, resulting in what we refer to as explainable large
language models [2]. XLLMs integrate mechanisms for generating interpretable
outputs alongside predictions. These can take the form of attention heatmaps,
token-level rationales, natural language justifications, or evidence-based answer
highlights. In contrast to black-box output, XLLMs offer the transparency that
is essential for clinical trust and regulatory acceptance.

In our approach, XLLMs serve as interpretable interfaces between model
outputs and human users, particularly clinical staff. For example, given a diag-
nostic input, such as pathology image labels or patient notes, the XLLM can
provide also an explanation. This supports human-in-the-loop workflows, where
clinicians can validate or challenge model decisions based on the provided justi-
fications.

Moreover, XLLMs enhance model transparency in a federated setting, where
understanding what models have learned across diverse institutions is challeng-
ing. Since client models may be architecturally and data-wise diverse (especially
under NAS), generating consistent, interpretable outputs via XLLMs creates a
shared language for explaining predictions. This not only increases user trust but
also facilitates collaborative validation and feedback cycles between institutions.

Our proposed model, MedFusion-LM, incorporates explainability natively
within the language modeling component, enabling both predictive reasoning
and explanation generation as parallel outputs. This design aligns with the
broader vision of human-centric AI and makes the framework more suitable
for deployment in real-world clinical environments.
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2.4 Knowledge Distillation

Knowledge distillation (KD) [24] is a model compression and transfer learning
technique in which a smaller, compact student model learns to imitate the be-
havior of a larger, more complex teacher model or ensemble. Originally proposed
for resource-efficient deployment, KD has since evolved into a powerful tool for
aggregating knowledge from heterogeneous sources. This makes it especially suit-
able for federated learning configurations.

Traditional FL approaches rely on weight aggregation, assuming that all
clients use the same architecture. However, this assumption becomes limiting
when combined with NAS, where each client can learn an optimal but unique
architecture tailored to its data. To bridge this architectural heterogeneity, we
use a KD-based aggregation approach. Rather than sharing model parameters,
each client generates logits or probabilities on a dataset [16]. These outputs
are then aggregated by a central server to train a unified student model, which
absorbs the collective knowledge of the diverse local models.

This strategy is inspired by frameworks such as FedMD [15] (heterogeneous
federated learning through model distillation) and FedDF [19] (ensemble distil-
lation for robust model fusion in federated learning), which demonstrate that
distillation-based FL can outperform weight averaging. For current implementa-
tion, the student model becomes the shared global model that is redistributed
to clients in the next training round. It is important to mention that knowledge
distillation also serves as a privacy-preserving mechanism. Since only logits are
shared, not raw data or gradients, the risk of data leakage is minimized.

3 The Proposed Framework

Our proposed framework integrates XLLMs within a federating learning (FL)
system enhanced by zero-shot NAS (ZS-NAS) and logit-based knowledge distil-
lation. The core innovation lies in enabling LLMs to operate as interpretable,
adaptive, and privacy-preserving diagnostic agents across distributed clinical en-
vironments. Each component of the framework empowers LLMs with personal-
ization, explainability, and scalability in the federated setting.

The medical AI pipeline that fuses large models and multimodal learning
(MedFusion-LM) (Fig. 2) begins with decentralized clinical data (EHRs, notes,
scans) at client institutions, ensuring privacy preservation. Each client performs
a zero-shot neural architecture search to adaptively select lightweight LLM
adapters suitable for local data characteristics. These models are fine-tuned and
produce soft predictions and rationales which are centrally distilled into a uni-
fied, interpretable student model. The resulting global student XLLM is redis-
tributed to clients, supporting continuous, explainable, and privacy-compliant
learning rounds.

3.1 Zero-Shot Architecture Search for LLM Adapters

To accommodate diverse local data distributions and clinical formats, each FL
client performs a lightweight, training-free ZS-NAS procedure to identify optimal
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Fig. 2: Layout of the MedFusion-LM framework. Clients send data to a shared
adapter selection and tuning pipeline. Aggregated outputs form a unified student
LLM redistributed for future rounds.

architectural components, such as attention-enhanced LLM adapters, convolu-
tional front-ends, or domain-specific encoders, that plug into a shared pre-trained
LLM backbone.

ZS-NAS allows clients to evaluate architectural variants without full train-
ing, by using low-cost performance estimators such as gradient norms, parameter
entropy, or Jacobian sensitivity. This ensures that each client discovers an archi-
tecture that maximizes the utility of the LLM for its specific clinical modality
(colonoscopy analysis and results, cytology sequences, and cognitive assessment).

These LLM-tuned adapters are then used to locally fine-tune or prompt the
shared LLM on private data, while preserving the base model’s alignment. Im-
portantly, this setup enables model flexibility at the edge while maintaining a
common language-based representation space across all clients (see Fig. 1).

SZS-NAS(a) = λ1 · Entropy(a) + λ2 · ∥∇L(a)∥+ λ3 · Jacobian(a) (1)

In Eq. (1), SZS-NAS(a) represents the zero-shot architecture score for candi-
date a, computed without full model training. The terms Entropy(a), ∥∇L(a)∥,
and Jacobian(a) quantify architectural uncertainty, gradient strength, and sen-
sitivity to input perturbations, respectively. The coefficients λ1, λ2, and λ3 are
tunable weights that balance the contribution of each proxy metric to the final
score.
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3.2 Logit-Based Knowledge Distillation for LLM Consensus

Because architectures vary across clients, traditional weight aggregation is in-
feasible. Instead, our system employs logit-based knowledge distillation [19] to
unify the distributed reasoning of multiple XLLMs.

Each client generates soft label predictions and textual rationales from their
LLM on a shared public or synthetic dataset. These logits are aggregated on
a central server to train a student model that mimics the collective outputs
(see Fig. 2). The student is designed to retain both the classification accuracy
and the explanation fidelity by learning the predicted class probabilities and the
associated explanation embeddings from the XLLMs.

This process allows the federated system to: (a) preserve architectural hetero-
geneity while maintaining semantic alignment; (b) distill diverse clinical reason-
ing into a unified, interpretable LLM-based student model; (c) enable explanation-
level aggregation, where the quality of generated rationales improves via ensem-
ble distillation.

LKD =

N∑
i=1

KL
(
zclient
i ∥ zstudent

i

)
(2)

In Eq. (2), LKD denotes the knowledge distillation loss used to train the
student model by imitating the soft outputs of the client models. Here, zclient

i

and zstudent
i are the logit vectors (soft predictions) from the i-th client model and

the central student model, respectively. The KL divergence KL(·∥·) measures the
difference between these distributions over N shared input samples, encouraging
the student to align its predictions with those of the clients.

3.3 Federated Explainability via LLM Rationales

Unlike traditional federated models that produce raw scores, our framework is
designed for human-AI cooperation. The distilled student model is capable of
generating clinically grounded rationales for each prediction in natural language.
These explanations can be reviewed, validated, or contested by human experts,
enhancing transparency, trust, and safety.

Furthermore, because LLM outputs can include references to clinical evi-
dence, observed features, and diagnostic criteria, the framework supports accu-
rate predictions and also aligned justifications across federated institutions.

The training cycle proceeds as follows: (i) clients perform ZS-NAS to select
lightweight, explainability-enhancing components for their local XLLM adapter;
(ii) each client fine-tunes the LLM locally and shares soft logits and textual
explanations on public prompts; (iii) a centralized student model learns to repli-
cate both decision and explanation patterns; (iv) the distilled global XLLM is
redistributed to clients, where the process repeats iteratively (see Fig. 2).

This design allows our system to scale across diverse healthcare environments,
delivering LLM-powered, transparent, and adaptive AI models that adhere to
both data privacy and clinical accountability.
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Explainable Federated Inference. Traditional federated learning systems
primarily output numerical predictions, offering limited transparency into how
those predictions are derived. In contrast, our framework enables explainable
federated inference [25], in which each model prediction is accompanied by a
natural language rationale, attention visualizations or feature highlights gener-
ated by the XLLM. These explanations are embedded into the model output
pipeline and are derived during both training and inference (see Fig. 1).

This approach ensures that predictions are not only accurate but also inter-
pretable, fulfilling a critical requirement in clinical environments where decisions
must be auditable and justifiable. By incorporating explanation tokens into the
training objective, we encourage the LLM to co-learn the diagnostic decision and
its reasoning trace, resulting in outputs that are both performance-optimized and
human-verifiable.

Furthermore, the explainable output can be aggregated during distillation.
The student model not only learns the soft labels from the teacher models, but
also aligns with their generated rationales. This multiobjective learning helps
enforce consistency in explanation quality across clients, even when they differ
in data domains and architecture design.

Lexpl =

N∑
i=1

∥rclient
i − rstudent

i ∥22 (3)

In Eq. 3, Lexpl denotes the alignment loss of the explanation, which ensures
that the student model replicates the explanatory rationales of the client models.
The vectors rclient

i and rstudent
i represent the explanation embeddings (e.g., at-

tention weights or textual rationale features) produced by the i-th client and the
student model, respectively. The loss is computed as the squared Euclidean dis-
tance (L2) over N samples, encouraging the student to learn both the decisions
and their interpretive justifications.

Client-Aware Model Fusion Conventional federated systems aggregate client
models, assuming uniformity in architecture and training conditions. This as-
sumption breaks down in real-world clinical settings, where datasets, modalities,
and patient populations vary widely. To overcome this, we propose a client-
aware model fusion [12] strategy that leverages both knowledge distillation and
metalearning principles to synthesize a global model from heterogeneous clients.

Rather than treating all client contributions equally, our framework evalu-
ates the reliability of the client model based on factors such as performance
confidence, consistency of explanations, and domain alignment. These factors
are encoded into the distillation process by weighting the logits of each client
and the rationale embeddings when training the student model. As a result, the
student model is not a naive average but a contextually fused global model that
reflects client diversity while maintaining strong generalization.

This strategy ensures robustness to noisy or biased clients and allows the
global model to prioritize high-fidelity contributions, especially in low-data or
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high-variability domains. It also lays the groundwork for future adaptive weight-
ing schemes that incorporate human feedback, model uncertainty, or explanation
quality as part of the fusion logic.

Together, explainable federated inference and client-aware model fusion el-
evate the capabilities of federated LLM systems, enabling them to deliver high
predictive accuracy and meaningful, aligned, and trustworthy decision support
across institutional boundaries.

αi =
exp(γ1ci + γ2ei + γ3di)∑N

j=1 exp(γ1cj + γ2ej + γ3dj)
(4)

In Eq. (4), αi represents the normalized weight assigned to the client i during
the fusion of the client-aware model. The terms ci, ei, and di correspond to
the client’s confidence score, explanation consistency, and domain alignment,
respectively, while γ1, γ2, and γ3 are scaling factors that control the influence
of each metric. The softmax formulation ensures that the weights αi sum to
1 across all N clients, allowing the global model to prioritize high-quality and
trustworthy client contributions during aggregation.

4 Results and Discussion

This section presents the empirical results of our proposed framework in three
medical tasks: detection of colorectal polyps’ premalignancy (using the PolyDB
dataset [11]), cervical cancer prediagnosis (based on the SIPakMeD dataset [28]),
and assessment of Alzheimer’s disease [31]. We evaluated and compared four
state-of-the-art language models – BioBERT, BioGPT, Med-PaLM, and the pro-
posed MedFusion-LM – across multiple dimensions, including the effectiveness
of knowledge distillation in heterogeneous environments.

Additionally, we benchmark the performance of representative models from
diverse architectural families [1], including CNNs, vision transformers (ViT),
autoencoders, and hybrid models that combine CNNs with shallow classifiers,
such as random forests. This holistic comparison enables us to assess raw accu-
racy and model adaptability, explainability, and cross-domain transferability in
federated clinical settings.

As illustrated in Fig. 3, MedFusion-LM outperforms all baseline models –
BioBERT, BioGPT, and Med-PaLM – across the three evaluated clinical tasks.
Although Med-PaLM demonstrates strong performance in the Alzheimer’s do-
main, MedFusion-LM exceeds it by a margin of over 4 percentage points, achiev-
ing the highest precision (96.61%). The gains are even more pronounced in the
colorectal and cervical cancer tasks, where MedFusion-LM attains accuracies of
92.92% and 96.04%, respectively, suggesting superior adaptability and general-
ization. These improvements validate the effectiveness of integrating zero-shot
NAS, explainable LLMs, and logit-based knowledge distillation in federated clin-
ical settings.

Fig. 4 illustrates the mean accuracy of four models across 10-, 15-, and 30-
fold cross-validation settings on the colorectal polyps dataset. MedFusion-LM
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Fig. 3: Accuracy of four large language models evaluated on three clinical tasks.
MedFusion-LM consistently outperforms others across all use cases.
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Fig. 4: Mean accuracy for each model across different k-fold cross-validation set-
tings (colorectal polyps samples).

consistently achieves the highest accuracy in all settings, surpassing the second-
best model, Med-PaLM, by approximately 4 percentage points on average. In
particular, MedFusion-LM demonstrates both high performance and stability,
with minimal variance as the fold count increases, indicating robustness to par-
titioning strategies. These results highlight the framework’s strong generalization
capability, driven by federated NAS tuning and explanation-guided knowledge
distillation.
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Fig. 5: Average accuracy progression of five models’ quintessence (families) over
10 federated training rounds on the Alzheimer’s dataset. LLMs show steeper and
higher convergence in the Flower federated learning environment.

Fig. 5 illustrates the average accuracy progression of five model families over
10 federated training rounds on the cervical cancer datasets. MedFusion-LM
(LLM-based) demonstrates the steepest and highest convergence, achieving over
91% accuracy by round 10, significantly outperforming ViT-Med, the convolu-
tional autoencoder (CAE) model, and CNN-based (ResNet-18 and CNN + RF)
baselines. The shallow hybrid model (CNN + RF) shows the slowest improve-
ment and the lowest final accuracy, underscoring its limitations in the capture
of complex medical features. These results emphasize the superior representa-
tional capacity and learning efficiency of language model-driven architectures in
federated clinical environments.

Table 1: Simulated transfer performance across medical domains.
Source Target Model Target acc. Fine-tuning drop

MedFusion-LM 86.7% 5.1%
ViT-Med 85.6% 6.2%Colorectal Cervical

ResNet-18 84.4% 7.4%
CAE 83.2% 8.6%

MedFusion-LM 85.3% 6.6%
ViT-Med 84.0% 7.9%Cervical Alzheimer

ResNet-18 83.1% 8.8%
CAE 82.3% 9.6%

MedFusion-LM 88.1% 6.9%
ViT-Med 86.4% 8.6%Alzheimer Colorectal

ResNet-18 85.3% 9.7%
CAE 84.5% 10.5%

Table 1 summarizes the simulated cross-domain transferability of four repre-
sentative models across colorectal, cervical, and Alzheimer datasets. MedFusion-
LM consistently achieves the highest target accuracy and the lowest fine-tuning
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Table 2: Scientific comparison of model families in federated clinical AI systems.
Aspect Metric LLM ViT AE CNN

Interpretability Qualitative rating ✰✰✰✰✰ ✰✰✰✰✩ ✰✰✩✩✩ ✰✰✰✩✩

Transferability Cross-domain acc. ✰✰✰✰✰ ✰✰✰✰✩ ✰✰✰✩✩ ✰✰✩✩✩

Training efficiency Resource usage ✰✰✩✩✩ ✰✰✩✩✩ ✰✰✰✩✩ ✰✰✰✰✩

FL compatibility Arch. support ✰✰✰✰✰ ✰✰✰✩✩ ✰✰✰✩✩ ✰✰✩✩✩

Multimodal capability Input flexibility ✰✰✰✰✩ ✰✰✰✩✩ ✰✰✩✩✩ ✰✩✩✩✩

Robustness to noise Tolerance score ✰✰✰✩✩ ✰✰✰✩✩ ✰✰✩✩✩ ✰✰✩✩✩

Explanation alignment Alignment support Yes Yes No No

drop in all source-target combinations, demonstrating its strong generalization
and adaptation capabilities. Compared to CNNs, autoencoder (AE) approaches,
and ViT-based models, it exhibits greater resilience to domain shifts, which is
critical for real-world deployments where disease distributions vary.

The star ratings reported in Table 2 reflect a structured qualitative assess-
ment derived from empirical results, architectural analysis, and published bench-
marks. Each of the analyzed aspects, like interpretability, transferability, and
robustness, was scored on a scale of one to five stars based on diverse criteria:
rationales in LLMs, attention heatmaps in ViTs, and post hoc visualizations in
CNNs; inferred transferability from cross-domain performance drops (Table 1);
convergence speed and computational overhead during training; architectures
that can flexibly support adapter tuning or knowledge distillation; ingestion of
diverse input modalities (images, text, structured data); data variability and
label noise; explanation-level alignment across clients.

These results support the robustness of our LLM-driven framework in hetero-
geneous clinical environments and highlight its suitability for transfer learning
under federated constraints.

5 Generalizable Insights about Responsible Application
of Machine Learning in Healthcare

The development and deployment of machine learning systems in healthcare
require a balance between predictive performance, ethical safeguards, and clinical
usability. Our work with MedFusion-LM illustrates several principles that extend
beyond the specific medical domains studied.

Federated learning, by design, enables training on data from multiple in-
stitutions without centralizing sensitive records. This diversity can reduce the
risk of demographic or institutional bias, but fairness audits and bias-aware
evaluation protocols must complement it to address disparities in model perfor-
mance. Preserving patient confidentiality is paramount under regulations such
as GDPR. FL inherently mitigates privacy risks by keeping data local, and the
use of logit-based aggregation further limits leakage. Nevertheless, integrating se-
cure aggregation and differential privacy can provide stronger guarantees against
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adversarial inference. Clinical adoption depends on transparent reasoning. The
integration of XLLMs into the predictive pipeline enables models to produce
both decisions and interpretable rationales. This principle, aligning outputs with
human-readable justifications, applies to a wide range of diagnostic and prog-
nostic systems.

In healthcare, models must remain reliable across heterogeneous settings,
modalities, and patient populations. Techniques such as neural architecture search
for local adaptation and knowledge distillation for consensus learning can en-
hance robustness, ensuring stable performance despite domain shifts or noisy
inputs. Deployment should be guided by multidisciplinary oversight, incorpo-
rating clinical expertise, ethical review, and compliance with evolving AI gover-
nance standards. Embedding feedback loops and human-in-the-loop mechanisms
fosters accountability and supports continuous improvement.

By embedding these principles into the design and lifecycle of ML systems,
healthcare applications can achieve technical excellence and sustainable impact.

6 Conclusions

This paper introduced MedFusion-LM, an integrated framework that unifies fed-
erated learning, neural architecture search, and explainable large language mod-
els to address core challenges in clinical AI, namely data heterogeneity, archi-
tectural rigidity, and decision opacity. By leveraging zero-shot NAS, client-side
architectures were dynamically tailored to local data distributions without the
need for exhaustive training. Simultaneously, logit-based knowledge distillation
enabled the fusion of diverse client models into a cohesive global student model
without requiring architectural uniformity.

Experimental results across three medical domains: colorectal polyps, cervical
cancer, and Alzheimer’s disease, demonstrated that MedFusion-LM outperforms
state-of-the-art baselines such as BioBERT, BioGPT, and Med-PaLM in both
predictive accuracy and cross-validation robustness. The integration of LLM-
generated rationales supports explainable federated inference, a critical feature
for clinical adoption and trust.

Our findings suggest that combining adaptive architecture search with ex-
plainable, language-based representations paves the way toward a new class of
federated AI systems—those that are not only privacy-preserving and perfor-
mant, but also interpretable, resilient, and clinically aligned. Future work will
explore real-time deployment in hospital environments, extension to multimodal
data, and clinician-in-the-loop feedback mechanisms to further close the gap
between AI prediction and medical reasoning.
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